

JAMES E. ETZEL, Ph. D. Special Consultant

Registered Engineers Class D Industrial Waste Class 3 Municipal Waste

April 30, 1980

320 NORTH McKINLEY, WARSAW, INDIANA 46580

Dalton Foundries, Inc. P.O. Box 1388 Warsaw, Indiana 46580

ATTENTION: Mr. John Canan

Gentlemen:

Following are the results of the leach test analyses which you requested: AFS AFS AFS EPA 12788 12789 12790 Sample No. 12791 Concrete Cor es Site Fill Site Fill Type Slag COD 54 36 87 *1 *] *1 Cyanide *0.5 *0.5 *0.5 *0.5 Lead *0.1 *0.1 *0.1 *0.1 Cadmium 1,0 *10 *10 *10 *10 Iron *1 Chromium 5.3 *1 *1 *] *0.5 *0.5 *0.5 *0.5 Copper 4 *0.1 Zinc *0.1 *O.l *0.5 Nickel *0.5 *0.5 *1 *0.1 *0.09 Phencl *0.01 *0.01 0.6 Cil & Grease Second Extraction

Second Extraction COD

Zinc

*1

1.1

* Indicates less than.

Values are given as mg/l.

Sample No. 12790 was tested according to the E.P.A. approved test procedure. The other samples were leached according to the A.F.S. procedure.

(cont.)

Prom DimvFCdoc # 2927/26/ Q927/26/ (pg 28 of 34) accersed 11/23/10 (sualsops 29-34, 600 ph

.

CLIENT SAMPLE ID:

CLIENT PROJECT: Waste Rust Preventative

11/7/97 Date Collected: 11/7/97 Date Received:

Report Date: EIS Sample No: 047042 EIS Order No: 971100073

Parameter		Results	Units	SDL	MDL	Analyst	Test	Method	1
METALS .									
Antimony, Total		0.90	mg/L	0.1	0.05	ClearN	11/13/97	200.7	
Arsenic, Total	~	0.36	mg/L	0.1	0.05	ClearN	11/13/97	200.7	
Beryllium, Total		< 0.02	mg/L	0.02	0.01	ClearN	11/13/97	200.7	
Cadmium, Total		<0.02	mg/L	0.02	0.01	ClearN	11/13/97	200.7	
Chromium, Total		0.32	mg/L	0.02	0.01	ClearN	11/13/97	200.7	
Copper Total		1.51	mg/L	0.02	0.01	ClearN	11/13/97	200.7	
Lead, Total	81	<0.1	mg/L	0.1	0.05	ClearN	11/13/97	200.7	
Mercury, Total		< 0.001	mg/L	0.001	0.0002	ShaneD	11/21/97	245.1	
Nickel, Total		0.24	mg/L	0.02	0.01.	ClearN	11/13/97	200.7	
Selenium, Total		0.37	mg/L	0.1	0.05	ClearN	11/13/97	200.7	
Silver, Total	40	<0.02	mg/L	0.02	0.01 -	ClearN	11/13/97	200.7	
Thallium, Total		0.58	mg/L	0.2	0.1	ClearN	11/13/97	200.7	
Zinc, Total		0.74	mg/L	0.02	0.01	ClearN	11/13/97	200.7	

QUALITY ASSURANCE DATA EP TOXICITY and/or LEACHING METHOD

Parameter	% Recovery USEPA EMSL	- Accuracy	% RSD Precision
	QC Sample	Matrix Spike	Analysis
Arsenic *	83.7	-	,
Barium *	117.5		
Cadmium *	111.		
Chromium *	110.8	-	
Copper	108,2		
Iron	102.4		
Lead *	120,2	-	
Manganese	100.6		
Mercury *	116.7	-	
Nickel	109.2		
Selenium *	103.5		
Silver *	127.	-	:
Sodium	94.8	*	
Zinc	103.4		
Chlorides	102.5		8.8
Cyanide, Total	99.3		
Fluoride	76.9		
PCB			
рН			
Phenols	94,4		
Sulfate	94,4		
Sulfide, Total	· · · · · · · · · · · · · · · · · · ·		
TDS			
TOC			
ТОН			

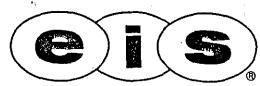
^{*} These metals are analyzed by the Method of Standard Additions

	EP Toxicity			a Leaching M te Types Onl	
Parameter	RCRA	A	B	C	<u>D</u>
Arsenic *	5.0	0.05	0.5	1.25	5.0
Barium *	100	1.	10.	25.	100.
Cadmium *	1.0	0.01	0.1	0.25	1.0
Chromium *	5.0	0.05	0.5	1.25	5.0
Lead *	5.0	0.05	0.5	1.25	5.0
Mercury *	0.2	0.002	0.02 \	0.05	0.2
Selenium *	1.0	0.01	0.1	0.25	1.0
Silver *	5.0	0.05	0.5	1.25	5.0
Chlorides	-	250.	2500.	6250.	**
Copper	_	0.25	2.5	6.25	**
Cyanide, Total	-	0.2	2.	5.	**
Fluoride	;	1.4	14.	35.	**
Iron	-	1.5	1 ,5 .	**	**
Manganese -	~	0.05	0.5	**	**
Nickel	-	0.2	2.	5.	**
PCB		_	_	-	, -
рн		6.0 - 9.0	5 - 10	4 - 11	**
Phenols	-	0.3	3.	7.5	**
Sodium		250.	2500.	6250.	**
Sulfate	_	250.	2500.	6250.	**
Sulfide, Total	-	_	5.	12.5	**
TDS ,	· . <u>-</u>	500.	5000.	12500.	* **
TOC	_		_	****	***
тон	_	<u>-</u>		_	_
Zinc	_	2.5	25.	62.5	**

^{*} Limits shown are based on EP Toxicity Analysis Data

^{**} mosting is not warriwed

ANALYTICAL REPORT SHEET EP TOXICITY - METALS ANALYSIS


DIC Joh Number	70			
EIS Lab Number	780F			
Client Description	NORTH SETTLING		·.]	
	TANK #153		į	
* * * * * * * * * * * *	* * * * * *	* * * * *	* * * * * *	* * * * *
% Solids	75.1			
Weight Raw Sample (g)	107.5			
Filters Used	APIS			
·	HAWP			
·				
		- 		
* * * * * * * * * * * * * * * * * * *	* * * * * *	* * * * *	* * * * *	* * * * *
	9.0			
Final Extract pH (24 hr)	4.9			<u> </u>
Acid Added (24hr)(ml)	29.9			,
Final Extract pH (28hr)				
Acid Added (4hr)(ml)		l		<u></u>
Total Acid Added (ml)	29,9			
Total DI Water Added (ml)	1585.	-		
Original Liquid Phase(ml)	23,			
Final Extract Volume (ml)	1637.9			
* * * * * * * * * * * * * * *	* * * * * *	* * * * *	* * * * * *	* * * * *
RCRA Metals				
Arsenic (PPM)	<0,01			
Barium (PPM)	<0.05			
Cadmium (PPM)	۷٥،٥١			
Chromium (PPM)	40.05			
Lead (PPM)	<0.05			
Mercury (PPM)	<0,002			·
Selenium (PPM)	<0.005			
Silver (PPM)	20.05			
* * * * * * * * * * * *	* * * * * *	* * * * *	* * * * * *	* * * * *

Note: Tables of pH adjustments with time have been extracted from the EIS sample work sheets and are reproduced in the section of this report containing laboratory bench sheets.

ANALYTICAL REPORT SHEET STATE OF INDIANA - LEACHING METHOD ANALYSIS

EIS Lab Number	·780F			 -								1			;		
Client Description	NORTH SETTLING TANK' # 1.53											-					
* * * * * * * * * * *	* * * * * *	*	* *	*	*	*	*	*	*	*	*	7	*	*	*	*	* 3
Weigh Raw Sample (g)	110.8								•								-
Filters Used	AP 15					_						_					
	AP25											_					
	HAWP											_					
																	٠
DI Water Added (ml)	22/6						•										
* * * * * * * * * * * * * * * * * * * *	* * * * * *	*	* *	*	*	*	*	*	*	*	*	*	*	*	*	*	* :
PARAMETERS												_					
Copper (ppm)	0,12															٠.	
Iron (ppm)	0.14	<u> </u> -							_								
Manganese (ppm)	< 0.03															•	
Nickel (ppm)	<0.05																
Sodium (ppm)	22,				<u>.</u>						-						
Zinc (ppm)	0,06				T.											·	
Chlorides (ppm)	8																
Cyanide, Total (ppm)	<0.005																
Fluoride (ppm)	0.38																
PCB (ppm)																	
Phenols (ppm)	0.007																
Sulfate (ppm)	8,																
Sulfide, Total (ppm)	2.2																
TDS (ppm)	74.																
TOC (ppm)																	
TOH (ppm)																	
ph after 24 hours	8.6																

Note: The reverse side of this sheet lists reference methods utilized

EIS ENVIRONMENTAL ENGINEERS, INC.

1701 North Ironwood Drive • South Bend, Indiana 46635 • 219/277-5715

WASTE CLASSIFICATION ANALYSIS REPORT

Client: The Dalton Foundries	Sample Description
ATTN: J. R. Canan	EIS Analysis No.: 781F
Date Sampled: 2-28-86 Date Received: 3-3-86 Date Forwarded: 4-29-86 Purchase Order: 122 229	South Settling Tank #154

This report presents results of waste classification through laboratory analysis procedures. The following references were utilized, as needed, in the evaluation procedures herein.

- "Test Methods for the Evaluation of Solid Waste Physical/Chemical Methods" USEPA SW-846, July 1982, 2nd Edition
- "Methods for Chemical Analysis of Water and Wastes" EPA 600/4-79-020
- State of Indiana "Leaching Method"

The specific client requested analysis for the samples described above were the following.

EP Toxicity - Metals	<u>X</u>	State of Indiana Leaching Method	X
EP Toxicity - Organics		Volatile Organic Compounds	
Ignitability		Semi-volatile Organic Compounds	
Corrosivity		(Base/Neutrals Acid Fraction)	
Reactivity		PCB Pesticides	
Additional			

Materials constituting this report packet include laboratory analysis bench sheets. These bench sheets are required by the State of Indiana as an integral part of the Waste Classification Analysis Report. Certain sections of this report may not pertain to your samples but do constitute a part of the EIS Report Packet. All results are hand entered to eliminate lata transfer errors.

Andris Rozite, Laboratory Director

QUALITY ASSURANCE DATA EP TOXICITY and/or LEACHING METHOD

Parameter	% Recovery USEPA EMSL	- Accuracy	% RSD ' Precision
Tarameter	QC Sample	Matrix Spike	Analysis
Arsenic *	83.7	_	
Barium *	117.5	***	
Cadmium *	111.	-	
Chromium *	110.8	-	
Copper	108,Z		
Iron	102.4		
Lead *	120.2	-	
Manganese	100.6		
Mercury *	116.7		
Nickel	109.2		
Selenium *	103,5		
Silver *	127.	-	
Sodium	94.8	*	
Zinc	103.4		
Chlorides	102,5		
Cyanide, Total	99.3		
Fluoride	76.9		
PCB			
рН			
Phenols	94.4		
Sulfate	94,4		
Sulfide, Total			
TDS			
TOC	·		
ТОН			

^{*} These metals are analyzed by the Method of Standard Additions

REGULATORY LIMITS (ppm)

	EP Toxicity			a Leaching M te: Types: Onl	
Parameter	RCRA	A	B B	C C	
Arsenic *	5.0	0.05	0.5	11.,25	5.0
Barium *	100	1.	10.	2/5	1100 -
Cadmium *	1.0	0.01	0.1	0). 25	10
Chromium *	5.0	0.05	0.5	I.25	550
Lead *	5.0	0.05	0.5	11.25	5;0
Mercury *	0.2	0.002	0.02	0). 0.5)	01_2
Selenium *	1.0	0.01	0.1	6) _* 2/5	11.0
Silver *	5.0	0.05	0.5	125	5.0
Chlorides		250.	2500.	6250	**
Copper	-	0.25	2.5	6.25	米米
Cyanide, Total	-	0.2	2.	5,₀	**
Fluoride	-	1.4	14.	35.	米米
Iron	· -	1.5	15.	**	老米
Manganese	-	0.05	0.5	米火 :	水水
Nickel	· -	0.2	2.	55	**
РСВ	-	-		- ·	-
рН	-	6.0 - 9.0	5 - 10	48 - 1111	大米
Phenols	<u></u>	0.3	3.	7/5	**
Sodium	-	250.	2500.	6250	**
Sulfate	-	250.	2500.	6.250.,	杰米
Sulfide, Total	-		5.	1/2/5	**
TDS	-	500.	5000.	E2500.	**
TOC	-	_	-	-	-
гон		-	-	- .	
Zinc	:	2.5	25.	62.5	法法

^{*} Limits shown are based on EP Toxicity Analysis Damta

^{**} Testing is not required

ANALYTICAL REPORT SHEET EP TOXICITY - METALS ANALYSIS

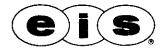
th Hing Tank #154 * * * * 80.8 106.2 APIS HAWP * * * * 9.2 4.8	* * * * * *	* * * * * *	* * * * *
* * * * 80.8 106.2 APIS HAWP * * * * 9.2		* * * * * *	* * * * *
106.2 APIS HAWP * * * *	* * * * *	* * * * * *	* * * * *
APIS HAWP * * * * 9.2	* * * * * *	* * * * * *	* * * * *
* * * * 9.2	* * * * *	* * * * * *	* * * * *
* * * *	* * * * *	* * * * * *	* * * * *
9,2	* * * * *	* * * * * *	* * * * *
9,2	* * * * * *	* * * * <u>*</u> * *	* * * * *
9,2			
		1	}
	. .		
13,4			
-	***************************************		
13,4			
1703.	a		
15.			
1731,4			
* * * *	* * * * *	* * * * * *	* * * * *
40.01			
0.6			
20.01			
<0.05			
<0.05			
<0.002			
0.005			
.0.05			* * * * * *
	13,4 13,4 1703, 15, 1731,4 * * * * <0,01 <0,05 <0,05 <0,005 <0,005	13,4 13,4 1703, 15. 1731,4 * * * * * * * * * * * 40,01 0.6 20,01 <0,05 <0.05 <0.005 .0.005	13,4 - 13,4 1703, 15. 1731,4 * * * * * * * * * * * * * * * * * * *

Note: Tables of pH adjustments with time have been extracted from the EIS sample work sheets and are reproduced in the section of this report containing laboratory bench sheets.

LEACHING METHOD ANALYTICAL REFERENCES

__ACHATE FORMATION

The leaching procedure utilized, and the equipment employed, is described on the report sheet titled SUPPLEMENTARY DATA EXTRACTION PROCEDURE TOXICITY TEST.


ANALYTICAL METHODS

PARAMETER	SW-846 Method #	EPA 600/4-79-020 Method #
Chlorides	On oto ricerou y	325.3
Copper	3010 / 7210	
Cyanide, Total	9010	
Fluoride		340.2
Iron		236.1
Manganese		243.1
_ckel	3010 / 7520	•
PCB	8080	
Hq		150.1
Phenols		420.2
Sodium		273.1
Sulfate		374.4
Sulfide, Total	9030	
TDS		160.2
TOC	9060	
ТОН	9020	
Zinc	3010 / 7950	,

ANALYTICAL REPORT SHEET STATE OF INDIANA - LEACHING METHOD ANALYSIS

EIS Lab Number	781F		<u> </u>									···				
Client Description	South Settling , Tank #154										,		•	·		
* * * * * * * * * *	* * * * * *	* *	* 7	* *	*	*	*	*	*	*	*	*	*	*	*	* *
Weigh Raw Sample (g)	111.5															•
Filters Used	AP15				_											
	HAWP										_					
DI Water Added (ml)	2230					,	•									
* * * * * * * * * * * * *	* * * * * *	* *	* .	* *	* *	*	*	*	*	*	*	*	*	*	*	* *
PARAMETERS																
Copper (ppm)	0.06														٠,	
Iron (ppm)	<0.10	ļ												_		
Manganese (ppm)	<0.03															·
Nickel (ppm)	<0.05															
Sodium (ppm)	11.			•												
Zinc (ppm)	<0.03															
Chlorides (ppm)	5															
Cyanide, Total (ppm)	40,005								•					•		
Fluoride (ppm)	0.24															
PCB (ppm)																
Phenols (ppm)	0.005															
Sulfate (ppm)	8				-											
Sulfide, Total (ppm)	1.4							,								
TDS (ppm)	88								-							
TOC (ppm)																
TOH (ppm)																.
ph after 24 hours	8.0							· <u>.</u>					-			

Note: The reverse side of this sheet lists reference methods utilized

WASTE CHARACTERIZATION ANALYSIS REPORT

Client: The Dalton Foundries, Inc. P. O. Box 1388	Sample Description
Warsaw, IN 46580 Attn: J. R. Canan	EIS Analysis No.: 3320H - 3330H
Date Sampled:	3320H - #489 3326H - #495 3321H - #490 3327H - #496
-	3322н - #491 3328н - #497
	3324H - #493 3330H - #499
Date Received: 07-11-88	3325H #494
Date Forwarded: 11-08-88	
Purchase Order: 140905	EIS Project No:

This report presents results of waste characterization through laboratory analysis procedures. The following references were utilized, as needed, in the evaluation procedures herein.

- "Test Methods for the Evaluation of Solid Waste Physical/Chemical Methods" USEPA SW-846, November 1986, 3rd Edition
- . "Methods for Chemical Analysis of Water and Wastes" EPA 600/4-79-020
- . State of Indiana "Leaching Methods"

The specific client requested analysis for the samples described above were the following:

EP Toxicity-Metals	<u>√</u> .	TCLP-Metals	 Ind Leaching	
EP Toxicity-Pesticides		TCLP-VOC (ZHE)	 Total Metals	
EP Toxicity-Herbicides		TCLP-Pesticides		
Corrosivity		TCLP-Herbicides	 ADDITIONAL	
Reactivity (CN & S)		TCLP-Base/Neutrals	 	
Ignitability		TCLP-Acid Fraction		

Materials constituting this report packet include laboratory analysis bench sheets. These bench sheets are required by the State of Indiana as an integral part of the Waste Characterization Analysis Report. Certain sections of this report may not pertain to your samples but do constitute a part of the EIS Report Packet. All results are hand entered to eliminate data transfer errors.

Aski Rozite, Laboratory Director

QUALITY ASSURANCE DATA EP TOXICITY and/or LEACHING METHOD

Parameter	% Recovery - USEPA EMSL	- Accuracy ,	% RS Precis	
Tarame ter	QC Sample	Matrix Spike	Analy	,
Arsenic *	94.8	-	0	(3323H)
Barium *	103, 99.1, 100.7	-	0	(3325H) (3327H)
Cadmium *	112-8	-	0	(33274)
Chromium *	101.4, 96.9	_	0	(332SH)
Copper	101.9, 102.9		4.5	(3327H)
Iron	102, 101.8		0	(33274)
Lead *	114, 31.5	_	4.8	(33274)
Manganese	103.3,102.1		0	(33274)
Mercury *	98, 96.5	-	0	L3321H)
Nickel	95.7, 98.4, 103.6		0	(3325H) (33274)
Selenium *	89.8		0	(33234)
Silver *	98.8, 97.6	-	0	(33274)
Sodium	102.9, 104.1		0.5	(3327 <i>H</i>)
Zinc	99.2, 98.4		0	(3327H)
Chlorides	/02		0	(332 9 H)
Cyanide, Total	35		0	(332911)
Fluoride	1/3-2	101 (33214)	4.9	(3327#)
PCB				
рН			0	(33244)
Phenols	80.2			
Sulfate	98.2		1./	(332410)
Sulfide, Total			5,2	(33244)
TDS			8.1	(3328H)
TOC				
TOH				

^{*} These metals are analyzed by the Method of Standard Additions

	EP Toxicity			na Leaching M Ste Types Onl	
Parameter	RCRA	<u> </u>	В	C	D
Arsenic *	5.0	0.05	0.5	1.25	5.0
Barium *	100	1.	10.	25.	100.
Cadmium *	1.0	0.01	0.1	0.25	1.0
Chromium *	5.0	0.05	0.5	1.25	5.0
Lead *	5.0	0.05	0.5	1.25	5.0
Mercury *	0.2	0.002	0.02	0.05	0.2
Selenium *	1.0	0.01	0.1	0.25	1.0,
Silver *	5.0	0.05	0.5	1.25	5.0
Chlorides	-	250.	2500.	6250.	**
Copper	-	0.25	2.5	6.25	**
Cyanide, Total	-	0.2	2.	5.	**
Fluoride	-	2.4	24.	60.	**
Iron	-	1.5	15.	**	**
Manganese	-	0.05	0.5	**	**
Nickel	-	0.2	2.	5.	**
РСВ	-	-	_	-	-
рH	-	6.0 - 9.0	5 - 10	4 - 11	**
Phenols	- (0.3	3.	7.5	**
Sodium	<u>~</u>	250.	2500.	6250.	**
Sulfate	-	250.	2500.	6250.	**
Sulfide, Total	-	1.	5.	12.5	**
TDS	-	500.	5000.	12500.	**
TOC	-	-	-	_	-
тон	-	-	_	-	-
Zinc	_	2.5	25.	62.5	**

^{*} Limits shown are based on EP Toxicity Analysis Data

^{**} Testing is not required

ANALYTICAL REPORT SHEET EP TOXICITY - METALS ANALYSIS

EIS Lab Number	3320 H	3321H	33224	3323H
Client Description	#489	≠ 49 0	#491	#492
Client Description	#1 dust	#2 Dust Collector	# 4 Dust	#6 Dust
	collector 5-16-98	5-16-88	5-16-88	5-16-99
* * * * * * * * * * * * *	* * * * * *	* * * * * *	* * * * *	* * * * *
% Solids	100	100	100	100
Weight Raw Sample (g)	100.1	100.1	100.4	100.5
Filters Used	AP15	AP15	API5	APIS
	HAWP	HANP	HANP	HANP
* * * * * * * * * * * *	* * * * * *	* * * * *	* * * * * *	* * * * *
Initial Extract pH	9.6	9.0	8.0	8.6
Final Extract pH (24 hr)	4.8	7.3	7.3	7.3
Acid Added (24hr)(ml)	70.4	400.4	401.6	402.
Final Extract pH (28hr)			_	
Acid Added (4hr)(ml)				
Total Acid Added (ml)	70.4	400.4	401.6	402.
Total DI Water Added (ml)	1932	1602	1606	1608
Original Liquid Phase(ml)	0	0	.0	0
Final Extract Volume (ml)	2002.	2002.	2008.	2010.
* * * * * * * * * * * * * * * *	* * * * * *	* * * * *	* * * * * *	* * * * *
RCRA Metals				
Arsenic (PPM)	<0.01	<0.01	<0.01	<0.01
Barium (PPM)	<0.5	0,7	<0.5	0.6
Cadmium (PPM)	<0.01	< 0.01	<0.01	<0.01
Chromium (PPM)	<0.05	<0.05	0.09	0.08
Lead (PPM)	0.27	< 0,0/	20.01	<0.01
Mercury (PPM)	40.001	<0.00/	<0.001	< 0.001
Selenium (PPM)	< 0.005	<0.005	<0.005	<0.005
Silver (PPM)	<0.05	<0.05	<0.05	<0.05
* * * * * * * * * * * *	* * * * * *	* * * * *	* * * * * *	* * * * *

Note: Tables of pH adjustments with time have been extracted from the EIS sample work sheets and are reproduced in the section of this report containing laboratory bench sheets.

ANALYTICAL REPORT SHEET

ADDITIONAL TESTS PERFORMED ON EP TOXICITY EXTRACT

EIS Lab Number		3320H	3321H	3322 H	3323 H
Client Descript	ion	#489 #1 DUST Collector 5-16-88	#490 #2 Dust Collector 5-16-88	#491 #4 DUST collector 5-16-88	#492 #6 Dust collector 5-16-99
* * * * * * * * *	* * * *	* * * * * *	* * * * * *	* * * * * *	* * * * * *
Weigh Raw Sampl	Le (g)				
Filters Used					
				make, the second se	
DI Water Added	(m1)				
* * * * * * * *	* * * *	* * * * * *	* * * * * *	* * * * * *	* * * * * *
PARAMETERS					
Copper	(ppm)				
Iron	(ppm)				
1anganese	(ppm)				
Nickel	(ppm)	<0.1	<0./	<0./	0./3
Sodium	(ppm)				
Zinc	(ppm)				
Chlorides	(ppm)				
Cyanide, Total	(ppm)				
Fluoride	(ppm)				
PCB	(ppm)			,	
Phenols	(ppm)				
Sulfate	(ppm)				
Sulfide, Total	(ppm)				
TDS	(ppm)				
TOC	(ppm)				,
тон	(ppm)				
ph after 24 hou	ırs				
				_	

Note: The reverse side of this sheet lists reference methods utilized

ANALYTICAL REPORT SHEET

STATE OF INDIANA - LEACHING METHOD ANALYSIS

EIS Lab Number	3320H	3321H	33224	3323 H
Client Description	#489-#1 Dust Cullector 5-16-88	#490- #20UST Collector 5-16-85	#491 - #4 Dust collector 5-16-88	#492 -#6 Dust collector 5-16-88
* * * * * * * * * * *	* * * * * *	* * * * * *	* * * * * *	* * * * * *
Weight Raw Sample (g)	100.6	100.7	100	100.4
Filters Used	AP15	APIS	AP15	API5
	HAWP	HANP	HANP	HAWP
DI Water Added (ml)	2012	2014	2000	2008
* * * * * * * * * * * * * * * * * * *	* * * * * *	* * * * * *	* * * * * *	* * * * * *
Copper (ppm)	0.32	0.18	0,17	0.14
Iron (ppm)	0,28	<0./	<0.1	<0,/
Manganese (ppm)	0.07	<0.05	< 0.05	<0.05
Nickel (ppm)	<0.1	<0./	<0.1	<0.1
Sodium (ppm)	//3,	18.	10.	18.
Zinc (ppm)	0.08	<0.05	0,08	<0.05
Chlorides (ppm)	23	8.	<0.8	1.
Cyanide, Total (ppm)	0.02	<0.005	<0.005	<0.005
Fluoride (ppm)	0.86	0.66	9.4	14.5
PCB (ppm)				
Phenols (ppm)	0.05	0,/3	0.21	0.15
Sulfate (ppm)	127.	12.	<5.	< <i>5.</i>
Sulfide, Total (ppm)	0.3	<0.2	< 0.2	<0.2
TDS (ppm)	374.	74	36.	52.
Barium (ppm)	<0.5	40.5	<0.5	<0.5
Boron (ppm)	0,2/	0.20	<0,/	∠0./
pH after 24 hours	7.7	10.4	9.8	10.0

Note: The reverse side of this sheet lists reference methods utilized 2019 Revised (11-07-88)

LEACHING METHOD ANALYTICAL REFERENCES

LEACHATE FORMATION

The leaching procedure utilized, and the equipment employed, is described on the report sheet titled SUPPLEMENTARY DATA EXTRACTION PROCEDURE TOXICITY TEST. The only deviation from the description is that NO PH adjustments were made.

ANALYTICAL METHODS

PARAMETER	SW-846 Method #	EPA 600/4-79-020 Method #
Chlorides	BW 040 Heenou #	325.3
Copper	3010 / 7210	343.3
Cyanide, Total	9010	
Fluoride	2010	340.2
Iron		236.1
Manganese		243.1
Nickel	3010 / 7520	243.1
,	8080	
PCB	8080	150.1
pH		150.1
Phenols		420.2
Sodium		273.1
Sulfate		374.4
Sulfide, Total	9030	
TDS		160.2
TOC	9060	
ТОН	9020	
Zinc	3010 / 7950	

ANALYTICAL REPORT SHEET EP TOXICITY - METALS ANALYSIS

Client Description	#493 #9 Dust collector	#494	#495	
<u>-</u>	#9 Dust		, "	# 4 .96
* * * * * * * * * * * *		Core Sand, Composite	waste Sand	Slag
* * * * * * * * * * * * *	5-16-88	7-7-88	7-7-98	5-18-99
	* * * * * *	* * * * *	* * * * * *	* * * * *
% Solids	100	100	100	100
Weight Raw Sample (g)	100.4	100.2	100.3	100.1
Filters Used	AP15	APIS	API5	APIS
	HAND	HANP	HAMP	HAWP
* * * * * * * * * * * * *	* * * * * *	* * * * * *	* * * * * *	* * * * *
Initial Extract pH	9,5	6.2	8.5	10.5
Final Extract pH (24 hr)	5,0	5.1	5.3	6.7
Acid Added (24hr)(ml)	141.6	0.8	4,2	400.4
Final Extract pH (28hr)	_	-	4.9	_
Acid Added (4hr)(ml)	_	-	7	
Total Acid Added (ml)	141.6	0.8	11.2	400.4
Total DI Water Added (ml)	1866	2003	1995	1602
Original Liquid Phase(ml)	0	0	0	0
Final Extract Volume (ml)	2008	2004.	2006.	2002.
* * * * * * * * * * * * *	* * * * * *	* * * * *	* * * * *	* * * * *
RCRA Metals				
Arsenic (PPM)	40.01	<0.01	<0.01	<0.0/
Barium (PPM)	10,5	<0.5	<0.5	0.6
Cadmium (PPM)	<0.01	<0.01	<0.01	< 0.0/
Chromium (PPM)	<0.05	<0.05	<0.05	<0.05
Lead (PPM)	0.07	<0.01	< 0.01	0.01
Mercury (PPM)	<0.001	<0.001	20,001	<0,001
Selenium (PPM)	<0.005	<0.005	<0.005	<0.005
Silver (PPM)	<0,05	<0.05 * * * * *	<0.05	<0.05 * * * * *

Note: Tables of pH adjustments with time have been extracted from the EIS sample work sheets and are reproduced in the section of this report containing laboratory bench sheets.

ANALYTICAL REPORT SHEET

ADDITIONAL TESTS PERFORMED ON EP TOXICITY EXTRACT

EIS Lab Number	3324H	3325 H	3326 H	33274
Client Description	#493 #9 Dust . collector 5-16-88	#494 Core Sand Composite 7-7-88 * * * * * *	Sand 7-7-38	#496 Slag 5-18-88 * * * * * *
Weigh Raw Sample (g)			,	
Filters Used				
		200,000		
DI Water Added (ml)				
* * * * * * * * * * *	* * * * * * *	* * * * * *	* * * * * *	* * * * * *
PARAMETERS				
Copper (ppm)				
Iron (ppm)				
Manganese (ppm)				
Nickel (ppm)	0.39	<0,1	<0./	<0,/
Sodium (ppm)				
Zinc (ppm)				
Chlorides (ppm)				
Cyanide, Total (ppm)				
Fluoride (ppm)				
PCB (ppm)				
Phenols (ppm)				
Sulfate (ppm)				
Sulfide, Total (ppm)				
TDS (ppm)				
FOC (ppm)				
TOH (ppm)				
ph after 24 hours				

Note: The reverse side of this sheet lists reference methods utilized

LEACHING METHOD ANALYTICAL REFERENCES

_ACHATE FORMATION

The leaching procedure utilized, and the equipment employed, is described on the report sheet titled SUPPLEMENTARY DATA EXTRACTION PROCEDURE TOXICITY TEST.

ANALYTICAL METHODS

PARAMETER	SW-846 Method #	EPA 600/4-79-020 Method #
Chlorides		325.3
Copper	3010 / 7210	
Cyanide, Total	9010	
Fluoride		340.2
Iron		236.1
Manganese		243.1
.ckel	3010 / 7520	
РСВ	8080	
рН		150.1
Phenols		420.2
Sodium		273.1
Sulfate		374.4
Sulfide, Total	9030	
TDS		160.2
TOC	9060	
тон	9020	
Zinc	3010 / 7950	•

ANALYTICAL REPORT SHEET

STATE OF INDIANA - LEACHING METHOD ANALYSIS

25H 3326 H Fore Sand #495 - Waste 7-7-88 Sand 7-7-98 * * * * * * * * * * 0.9 100.6 P15 AP15 WP HAWP 018 2012 * * * * * * * * * *	3327H #496- 5/a9 5-18-58 * * * * * * 100.3 AP15 HANP 2006
* * * * * * * * * * * * * * * * * * *	5-18-58 * * * * * * 100.3 AP15 HANP
0.9 100.6 215 AP15 WP HAWP 018 2012	100.3 AP15 HANP
015 AP15 WP HAWP 018 2012	APIS HAWP
WP HAWP 018 2012	HAWP
018 2012	
	2006
	2006
* * * * * * * * *	
	* * * * * *
16 0.12	0.12
7 0.24	<0,1
< 0.05	<0.05
<0.1	<0.1
. 10.	20.
09 <0.05	10.05
4.	41.
0.006	<0.005
2 0.34	1.4
5 0.19	0.06
8.	37
.2 <0.2	<0.2
. 56.	186.
5 <0.5	<0.5
/ <0./	<0./
5 7.8	10.8
	16 0.12 17 0.24 15 <0.05 1 <0.1 10. 10. 10. 10. 10. 10. 10.

Note: The reverse side of this sheet lists reference methods utilized $^{2019}_{\mbox{Revised (11-07-88)}}$

LEACHING METHOD ANALYTICAL REFERENCES

LEACHATE FORMATION

The leaching procedure utilized, and the equipment employed, is described on the report sheet titled SUPPLEMENTARY DATA EXTRACTION PROCEDURE TOXICITY TEST. The only deviation from the description is that NO PH adjustments were made.

ANALYTICAL METHODS

PARAMETER	SW-846 Method #	EPA 600/4-79-020 Method #
Chlorides	on ordineering "	325.3
Copper	3010 / 7210	
Cyanide, Total	9010	
Fluoride		340.2
Iron		236.1
 Manganese		243.1
Nickel	3010 / 7520	
РСВ	8080	
рН		150.1
Phenols		420.2
Sodium		273.1
Sulfate		374.4
Sulfide, Total	9030	
TDS		160.2
TOC	9060	
ТОН	9020	
Zinc	3010 / 7950	

ANALYTICAL REPORT SHEET EP TOXICITY - METALS ANALYSIS

EIS Lab Number	3328H	3329H	33304	
Client Description	# 497 Noth Settling Tank 4-13-88	#498 East Settling Tank 4-13-88	#499 South Settling Tank 4-13-85	
* * * * * * * * * * * * *		* * * * * *	* * * * *	* * * * *
% Solids	89.4	70.2	100	
Weight Raw Sample (g)	100.7	102.6	100.1	
Filters Used		AP15	AP15	
	HAWP	HAWP	HAWP	
	-			
* * * * * * * * * * * *	* * * * * *	* * * * * *	* * * * *	* * * * *
Initial Extract pH	9.5	8.2	9.4	
Final Extract pH (24 hr)	5.0	5.2	4.9	
Acid Added (24hr)(ml)	70.2	4 8.	20.4	
Final Extract pH (28hr)				
Acid Added (4hr)(ml)	_			
Total Acid Added (ml)	70.2	48.	20.4	
Total DI Water Added (ml)	1731	/392.	1982	
Original Liquid Phase(ml)	4.5	28.5	O	
Final Extract Volume (ml)	1806.	1468.	2002.	
* * * * * * * * * * * * * * * * * * * *	* * * * * *	* * * * * *	* * * * * *	* * * * *
RCRA Metals				
Arsenic (PPM)	<0.01	<0.01	<0.01	
Barium (PPM)	0.6	<0.5	<0,5	
Cadmium (PPM)	<0.01	0.03	<0.01	
Chromium (PPM)	<0.05	<0.05	<0.05	
Lead (PPM)	0,01	0.02	<0.0/	
Mercury (PPM)	<0.001	<0.001	<0.001	
Selenium (PPM)	< 0.005	<0,005	<0.005	
	1	T	1	T

Note: Tables of pH adjustments with time have been extracted from the EIS sample work sheets and are reproduced in the section of this report containing laboratory bench sheets.

ANALYTICAL REPORT SHEET

ADDITIONAL TESTS PERFORMED ON EP TOXICITY EXTRACT

EIS Lab Number	3328H	3329H	3330H	
Client Description	#497 North	#498 East Settling Tank 4-13-88	#494 South Settling Tank 4-13-55	
* * * * * * * * * * * * * * * * * * * *	* * * * * *	* * * * * *	* * * * * *	* * * * * *
Weigh Raw Sample (g)				
Filters Used				
DI Water Added (ml)				
* * * * * * * * * * * *	* * * * * *	* * * * * *	* * * * * *	* * * * * *
PARAMETERS				
Copper (ppm)				
Iron (ppm)				
Manganese (ppm)				
Nickel (ppm)	<0.1	0,10	40.1	
Sodium (ppm)				
Zinc (ppm)				
Chlorides (ppm)				
Cyanide, Total (ppm)				
Fluoride (ppm)				
PCB (ppm)				·
Phenols (ppm)				
Sulfate (ppm)				
Sulfide, Total (ppm)				
TDS (ppm)				
TOC (ppm)				
TOH (ppm)				
ph after 24 hours				

Note: The reverse side of this sheet lists reference methods utilized

LEACHING METHOD ANALYTICAL REFERENCES

LEACHATE FORMATION

The leaching procedure utilized, and the equipment employed, is described on the report sheet titled SUPPLEMENTARY DATA EXTRACTION PROCEDURE TOXICITY TEST.

ANALYTICAL METHODS

PARAMETER	SW-846 Method #	EPA 600/4-79-020 Method #
Chlorides	,	325.3
Copper	3010 / 7210	
Cyanide, Total	9010	
Fluoride		340.2
Iron		236.1
nganese		243.1
Nickel	3010 / 7520	
PCB	8080	
рН		150.1
Phenols		420.2
Sodium		273.1
Sulfate	_	374.4
Sulfide, Total	9030	1
TDS	·	160.2
TOC	9060	
тон	9020	
Zinc	3010 / 7950	

ANALYTICAL REPORT SHEET

STATE OF INDIANA - LEACHING METHOD ANALYSIS

·					
EIS Lab Number		<i>3</i> 328 <i>H</i>	3329H	3330H	
Client Descript	lient Description		#498 - E. Settling Tank 4-13-88	#499 - S. Settling Tank 4-13-88	
* * * * * * * *	* * *	Tank 4-13-88 * * * * * *	* * * * * *	* * * * * *	* * * * * *
Weight Raw Samp	le (g)	106.6	100.1	101.2	
Filters Used		AP15	AP15	APIS	
		HAWP	HAWP	HAWP	
DI Water Added	(ml)	2/32	2002	2024	
* * * * * * * * * * * * * * * * * * *	* * *	* * * * * *	* * * * * *	* * * * * *	* * * * * *
Copper	(ppm)	0,10	0,07	0.14	
Iron	(ppm)	0.16	0.21	0.12	
Manganese	(ppm)	<0,05	< 0.05	<0.05	
Nickel	(ppm)	<0./	<0,1	<0,/	
Sodium	(ppm)	<i>34.</i>	34.	12.	
Zinc	(ppm)	<0.05	<0.05	<0.05	
Chlorides	(ppm)	13.	16.	7.	
Cyanide, Total	(ppm)	<0.005	<0.005	0.006	
Fluoride	(ppm)	0.45	0.56	0.22	
PCB	(ppm)				
Phenols	(ppm)	0.02.	0.01	<0.005	
Sulfate	(ppm)	5.	29.	<i><5,</i>	
Sulfide, Total	(ppm)	<0.2	0.2	<0.2	
TDS	(ppm)	87.	110.	42.	
Barium	(ppm)	<0.5	<0.5	<0,5	
Boron	(ppm)	<0./	0./2	<0,/	
pH after 24 hou	ırs	9, 2	8.2	7.4	
					·

Note: The reverse side of this sheet lists reference methods utilized 2019 Revised $^{(11-07-88)}$

LEACHING METHOD ANALYTICAL REFERENCES

LEACHATE FORMATION

The leaching procedure utilized, and the equipment employed, is described on the report sheet titled SUPPLEMENTARY DATA EXTRACTION PROCEDURE TOXICITY TEST. The only deviation from the description is that NO PH adjustments were made.

ANALYTICAL METHODS

PARAMETER	SW-846 Method #	EPA 600/4-79-020 Method #
Chlorides	311 010 11001100 1	325.3
Copper	3010 / 7210	
Cyanide, Total	9010	
Fluoride		340.2
Iron		236.1
 Manganese		243.1
Nickel	3010 / 7520	
РСВ	8080	
рн		150.1
Phenols		420.2
Sodium		273.1
Sulfate		374.4
Sulfide, Total	9030	
TDS		160.2
TOC	9060	
тон	9020	
Zinc	3010 / 7950	

FOUNDRY WASTE CLASSIFICATION

`lient Sample Description	#489 #1 Dust Collector 5-16-88	#490 #2 Dust Collectur 5-16-88	#491 44 Dust Collector 5-16-88	#492 #6 Dust Collector 5-16-88
Waste Type Assigned	В		B	B
Basis for Assignment	Pb, Ca, Mn	PH	Cr, pH Fluoride	Cr, pH Fluoride

The State of Indiana has set forth catagories for classification of Foundry wastes into four (4) possible waste types. The classification is based on laboratory test results and the comparison of these results with maximum contaminant limits for each catagory. Foundry waste type limits are presented in the section of this report titled Regulatory Limits.

If EIS has assigned a waste type classification for samples identified above, the assignment was made on the following basis.

- Statistical calculations were used only if the test result (for any parameter) was within + 20% of the Regulatory Limit. If no parameter results were within this range, simple comparisons were made.
- · The parameter placing a waste into a certain Waste Type has been shown.
- · If statistical calculations were required, they were made as follows:
 - A single sample only was received for analysis. Statistical calculations were based on laboratory analytical precision data. The precision data used was either historical or specifically generated on that sample. In either case, the number of samples was considered to be two (2).
 - Multiple samples representing the same waste stream were received for analysis. Calculations were based on the values generated by all of the samples.

The equations used for the statistical calculations are presented on the reverse side of this report sheet. These equations were taken from SW-846.

EQUATIONS	DEFINITIONS
$1. \overline{X} = \frac{\Sigma X}{n}$	X = Parameter result
_ s	n = Number of results for a single parameter
$2. S\overline{X} = \frac{S}{\sqrt{n}}$	\overline{X} = Arithmetic Average
3. $CI = \overline{X} + t_{20} S \overline{X}$	S = Standard Deviation of n-l
	$S\overline{X}$ = Standard error
4. CI \$ RL	CI = Confidence Interval
	t. ₂₀ = Students "t" test values at a probability of 0.2
	RL = Regulatory Limit

Explanation

Once the CI has been calculated, it is compared to the RL. If the CI is less than the applicable RL value, the parameter under consideration can be placed into the category defined by the RL. If it is equal to or greater than the RL, the parameter must be placed into the next higher waste type category.

Students "t"	Test Values
$\underline{n-l}$	t.20
1	3.078
2	1.886
3	1.638
4	1.533
5	1.476
6	1.440
7	1.415

Calculations

FOUNDRY WASTE CLASSIFICATION

Client Sample Description	# 493 #9 Dust Collector 5-16-88	#494 Core Sand 7-7-88	# 495 Waste Sand 7-7-38	#496 5/ag 5-18-88
Waste Type Assigned	B	_	Α	<
Basis for Assignment	P6	phenol		pH

The State of Indiana has set forth catagories for classification of Foundry wastes into four (4) possible waste types. The classification is based on laboratory test results and the comparison of these results with maximum contaminant limits for each catagory. Foundry waste type limits are presented in the section of this report titled Regulatory Limits.

If EIS has assigned a waste type classification for samples identified above, the assignment was made on the following basis.

- Statistical calculations were used only if the test result (for any parameter) was within + 20% of the Regulatory Limit. If no parameter results were within this range, simple comparisons were made.
- · The parameter placing a waste into a certain Waste Type has been shown.
- · If statistical calculations were required, they were made as follows:
 - A single sample only was received for analysis. Statistical calculations were based on laboratory analytical precision data. The precision data used was either historical or specifically generated on that sample. In either case, the number of samples was considered to be two (2).
 - Multiple samples representing the same waste stream were received for analysis. Calculations were based on the values generated by all of the samples.

The equations used for the statistical calculations are presented on the reverse side of this report sheet. These equations were taken from SW-846.

EQUATIONS	DEFINITIONS
1. $\overline{X} = \frac{\Sigma X}{n}$	X = Parameter result
S S	n = Number of results for a single parameter
$2. S\overline{X} = \frac{S}{\sqrt{n}}$	\overline{X} = Arithmetic Average
3. CI = \overline{X} + t. ₂₀ S \overline{X}	S = Standard Deviation of n-l
4. CI ≶ RL	$S\overline{X}$ = Standard error
	CI = Confidence Interval
	t. ₂₀ = Students "t" test values at a probability of 0.2
	RL = Regulatory Limit

Explanation

Once the CI has been calculated, it is compared to the RL. If the CI is less than the applicable RL value, the parameter under consideration can be placed into the category defined by the RL. If it is equal to or greater than the RL, the parameter must be placed into the next higher waste type category.

Students "t"	Test Values
<u>n-1</u>	<u>t.20</u>
1	3.078
2	1.886
3	1.638
4	1.533
5	1.476
6	1.440
7	1.415

Calculations

FOUNDRY WASTE CLASSIFICATION

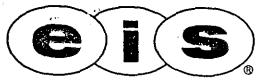
Client Sample Description	#497 North Settling Tank 4-13-88	# 498 East Settling Tank 4-13-84	# 499 South Settling Tank 4-13-88	
Waste Type Assigned	B	В	A	
Basis for Assignment	PH	Cd		

The State of Indiana has set forth catagories for classification of Foundry wastes into four (4) possible waste types. The classification is based on laboratory test results and the comparison of these results with maximum contaminant limits for each catagory. Foundry waste type limits are presented in the section of this report titled Regulatory Limits.

If EIS has assigned a waste type classification for samples identified above, the assignment was made on the following basis.

- Statistical calculations were used only if the test result (for any parameter) was within + 20% of the Regulatory Limit. If no parameter results were within this range, simple comparisons were made.
- · The parameter placing a waste into a certain Waste Type has been shown.
- · If statistical calculations were required, they were made as follows:
 - A single sample only was received for analysis. Statistical calculations were based on laboratory analytical precision data. The precision data used was either historical or specifically generated on that sample. In either case, the number of samples was considered to be two (2).
 - Multiple samples representing the same waste stream were received for analysis. Calculations were based on the values generated by all of the samples.

The equations used for the statistical calculations are presented on the reverse side of this report sheet. These equations were taken from SW-846.


EQUATIONS	DEFINITIONS		
$1. \overline{X} = \frac{\Sigma X}{n}$	X = Parameter result		
S	n = Number of results for a single parameter		
$2. S\overline{X} = \frac{S}{\sqrt{n}}$	\overline{X} = Arithmetic Average		
3. CI = \overline{X} + t. ₂₀ S \overline{X}	S = Standard Deviation of n-1		
-	$S\overline{X}$ = Standard error		
4. CI \$ RL	CI = Confidence Interval		
	t. ₂₀ = Students "t" test values at a probability of 0.2		
	RL = Regulatory Limit		

Explanation

Once the CI has been calculated, it is compared to the RL. If the CI is less than the applicable RL value, the parameter under consideration can be placed into the category defined by the RL. If it is equal to or greater than the RL, the parameter must be placed into the next higher waste type category.

Students	"t"	Test Values		
<u>n-1</u>		t.20		
1		3.078		
2		1.886		
3		1.638		
4		1.533		
5		1.476		
6		1.440		
7		1.415		

Calculations

EIS ENVIRONMENTAL ENGINEERS, INC.

1701 North Ironwood Drive • South Bend, Indiana 46635 • 219/277-5715

WASTE CLASSIFICATION ANALYSIS REPORT

Client: The Dalton Foundries	Sample Description EIS Analysis No.: 769F		
ATTN: J. R. Canan Date Sampled: 2-24-86 Date Received: 3-3-86 Date Forwarded: 4-29-86 Purchase Order: 122 229	#1 Collector #142	V	

This report presents results of waste classification through laboratory analysis procedures. The following references were utilized, as needed, in the evaluation procedures herein.

- "Test Methods for the Evaluation of Solid Waste Physical/Chemical Methods" USEPA SW-846, July 1982, 2nd Edition
- "Methods for Chemical Analysis of Water and Wastes" EPA 600/4-79-020
- State of Indiana "Leaching Method"

The specific client requested analysis for the samples described above were the following.

EP Toxicity - Metals	<u>X</u>	State of Indian	na Leaching Method	<u> </u>
EP Toxicity - Organics		Volatile Organ	c Compounds	
Ignitability			Organic Compounds	
Corrosivity		(Base/Neutrals	Acid Fraction)	
Reactivity		PCB	Pesticides	
Additional	~~~~			

Materials constituting this report packet include laboratory analysis bench sheets. These bench sheets are required by the State of Indiana as an integral part of the Waste Classification Analysis Report. Certain sections of this report may not pertain to your samples but do constitute a part of the EIS Report Packet. All results are hand entered to eliminate data transfer errors.

Andris Rozite, Laboratory Director

Parameter	. % Recovery USEPA EMSL	- Accuracy	% RSD ' Precision
rarameter	QC Sample	Matrix Spike	Analysis
Arsenic *	90.6	-	
Barium *	117.7	-	_
Cadmium *	119,2	•	
Chromium *	105.6	-	
Copper	104.9		
Iron	. 105.5		
Lead *	110.8	-	·
Manganese	105.4		
Mercury *	101,	-	
Nickel	105,7		
Selenium *	107.8		
Silver *	122.5	-	:
Sodium	94.6	294	<u>.</u>
Zinc	104.5		
Chlorides	102.5		
Cyanide, Total	99.3		
Fluoride	76.9		
PCB			
рН			
Phenols	94.4		
Sulfate	93,4		
Sulfide, Total			
TDS			
TOC			
TOH			

^{*} These metals are analyzed by the Method of Standard Additions

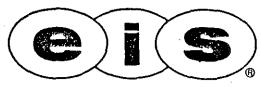
REGULATORY LIMITS (ppm)

	EP Toxicity			a Leaching M te Types Onl	
Parameter	RCRA	<u>A</u>	B B	C C	<u>D</u>
Arsenic *	5.0	0.05	0.5	1.25	5.0
Barium *	100	1.	10.	25.	100.
Cadmium *	1.0	0.01	0.1	0.25	1.0
Chromium *	5.0	0.05	0.5	1.25	5.0
Lead *	5.0	0.05	0.5	1.25	5.0
Mercury *	0.2	0.002	0.02	0.05	0.2
Selenium *	1.0	0.01	0.1	0.25	1.0
Silver *	5.0	0.05	0.5	1.25	5.0
Chlorides		250.	2500.	6250.	**
Copper	_	0.25	2.5	6.25	**
Cyanide, Total	-	0.2	2.	5.	**
Fluoride	***	1.4	14.	35.	**
Iron	-	1.5	15.	**	**
Manganese	. .	0.05	0.5	**	**
Nickel	, -	0.2	2.	5.	**
PCB	-	-	_	-	-
рН	-	6.0 - 9.0	5 - 10	4 - 11	**
Phenols	·	0.3	3.	7.5	**
Sodium		250.	2500.	6250.	**
Sulfate	-	250.	2500.	6250.	**
Sulfide, Total	_	-	5.	12.5	**
TDS	-	500.	5000.	12500.	**
TOC	-		-	-	-
20H		-			_
Zinc	_	2.5	25.	62.5	**

^{*} Limits shown are based on EP Toxicity Analysis Data

^{**} Testing is not required

ANALYTICAL REPORT SHEET EP TOXICITY - METALS ANALYSIS


* * * * * * * * * * * * * * * * * * *	769F 1 Dust 100 107,3 AP15 HAWP	* * * * * :	* * * * * *	* * * * *
% Solids Weight Raw Sample (g) Filters Used	100 107.3 AP15	* * * * *	* * * * *	* * * * *
Weight Raw Sample (g) Filters Used	107.3 AP15			
Filters Used	AP15			
				· · · · · · · · · · · · · · · · · · ·
	HAWP			
				· · · · · · · · · · · · · · · · · · ·
* * * * * * * * * * * * * * * * * * * *	* * * * *	* * * * *	* * * * *	* * * * *
Initial Extract pH	10,0			
Final Extract pH (24 hr)	5.1			
Acid Added (24hr) (ml)	69.2			•
Final Extract pH (28hr)				
Acid Added (4hr)(ml)				
Total Acid Added (ml)	69.2			
Total DI Water Added (ml)	2077	4.	-	
Original Liquid Phase(ml)	. 0			
Final Extract Volume (ml)	2146,2			
* * * * * * * * * * * * * * * * * * * *	* * * * *	* * * * *	* * * * * *	* * * * *
RCRA Metals				
Arsenic (PPM)	<0.01			
Barium (PPM)	40.5			_
Cadmium (PPM)	< 0, 01			
Chromium (PPM)	£0.05			
Lead (PPM)	<0.05	. *		
Mercury (PPM)	<0,002			
Selenium (PPM)	<0.005			
Silver (PPM) * * * * * * * * * * * * * *	<0.05	* * * * *		

Note: Tables of pH adjustments with time have been extracted from the EIS sample work sheets and are reproduced in the section of this report containing laboratory bench sheets.

ANALYTICAL REPORT SHEET STATE OF INDIANA - LEACHING METHOD ANALYSIS

EIS Lab Number	769F															
Client Description	#1 Dust										,	, ,,,				
* * * * * * * * *	* * * * * * *	* *	*	*	* *	*	*	*	*	*	*	*	*	*	*	* *
Weigh Raw Sample (g)	112.2															
Filters Used	AP15															
•	HAWP	ļ				_					4				·	<u>.</u>
						-					-	<u> </u>			•	
DI Water Added (ml)	2224			_		+-					1					
* * * * * * * * * *		* *	*	*	* 1	k *	*	*	*	*	\star	*	*	*	*	* *
PARAMETERS																
Copper (ppm)	<0.05															
Iron (ppm)	0.32															
Manganese (ppm)	0.03								_				·			
Nickel (ppm	<0.05															
Sodium (ppm	162.			;	_											
Zinc (ppm	0,33			क्ष												
Chlorides (ppm	28.															
Cyanide, Total (ppm	0.02															
Fluoride (ppm	0.95								<u></u>							
PCB (ppm																
Phenols (ppm	0.43			· <u>-</u>												
Sulfate (ppm	125.															
Sulfide, Total (ppm	1.4															
TDS (ppm	406,															
TOC (ppm												_				
TOH (ppm																
ph after 24 hours	8.3															

Note: The reverse side of this sheet lists reference methods utilized

1701 North Ironwood Drive • South Bend, Indiana 46635 • 219/277-5715

WASTE CLASSIFICATION ANALYSIS REPORT

The Dalton Foundries Sample Description Client: EIS Analysis No.: 770F J. R. Canan ATTN: #2 Collector 2-24-86 Date Sampled: 3-3-86 Date Received: #143 4-29-86 Date Forwarded: Purchase Order: 122 229

This report presents results of waste classification through laboratory analysis procedures. The following references were utilized, as needed, in the evaluation procedures herein.

- "Test Methods for the Evaluation of Solid Waste Physical/Chemical Methods" USEPA SW-846, July 1982, 2nd Edition
- "Methods for Chemical Analysis of Water and Wastes" EPA 600/4-79-020
- State of Indiana "Leaching Method"

The specific client requested analysis for the samples described above were the following.

EP Toxicity - Metals	X	State of Indiana Leaching Method <u>x</u>	
EP Toxicity - Organics		Volatile Organic Compounds	
Ignitability		Semi-volatile Organic Compounds	
Corrosivity		(Base/Neutrals Acid Fraction)	
Reactivity		PCB Pesticides	
Additional			

Materials constituting this report packet include laboratory analysis bench sheets. These bench sheets are required by the State of Indiana as an integral part of the Waste Classification Analysis Report. Certain sections of this report may not pertain to your samples but do constitute a part of the EIS Report Packet. All results are hand entered to eliminate data transfer errors.

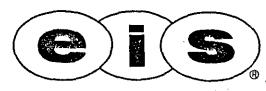
Parameter	% Recovery USEPA EMSL		% RSD Precision
	QC Sample	Matrix Spike	Analysis
Arsenic *	90.6	_	
Barium *	717.7	-	9.4
Cadmium *	119,2	-	
Chromium *	105.6	-	
Copper	104.9		
Iron	105.5		
Lead *	110,8	· -	
Manganese	105.4		
Mercury *	101	<u>-</u>	
Nickel	105,7	•	:
Selenium *	107.8		
Silver *	122,5	-	
Sodium	94.6	*	
Zinc	104.5	_	
Chlorides	102.5		
Cyanide, Total	99.3		
Fluoride	76.9		
PCB			
рН	:		0
Phenols	94.4		
Sulfate	93.4		
Sulfide, Total			
TDS	ŕ		2,4
TOC	·		
ТОН			1 to the

^{*} These metals are analyzed by the Method of Standard Additions

		State	e of Indiana		hod
Parameter EP	Toxicity (A	Foundry Waste	Types Only	D :
Arsenic *	5.0	0.05	0.5	1.25	5.0
Barium *	100		10.	25.	100.
Cadmium *	1.0	0.01	0.1	0.25	1.0
Chromium *	5.0	0.05	0.5	1.25	5.0
Lead *	5.0	0.05	0.5	1.25	5.0
Mercury *	0.2	0.002	0.02	0.05	0.2
Selenium *	1.0	0.01	0.1	0.25	1.0
Silver *	5.0	0.05	0.5	1.25	5.0
Chlorides	i -	250.	2500.	6250.	**
Copper	. -	0.25	2.5	6.25	**
lyanide, Total	-	0.2	2.	5.	**
Fluoride	-	1.4	14.	35.	**
Iron	: -	1.5	15.	* *	**
Manganese	· -	0.05	0.5	* *	**
Nickel	i	0.2	2.	5.	**
РСВ	· ·	-	-	-	-
рН	-	6.0 - 9.0	5 - 10	4 - 11	**
Phenols	· _	0.3	3.	7.5	**
Sodium	. -	250.	2500.	6250.	**
Sulfate	_	250.	2500.	6250.	**
Sulfide, Total	_		5.	12.5	**
TDS	_	500.	5000.	12500.	**
TOC		- ,	. -	-	-
ТОН	_	- ,	_	-	_
Zinc	_	2.5	25.	62.5	**

^{*} Limits shown are based on EP Toxicity Analysis Data

ANALYTICAL REPORT SHEET EP TOXICITY - METALS ANALYSIS


EIS Lab Number	770F			·
Client Description	#2 collector # 143			
* * * * * * * * * * * * * * * * * *	* * * * * *	* * * * *	* * * * * *	* * * * *
% Solids	106			
Weight Raw Sample (g)	101.5			
Filters Used	AP15			
	HAWP			
	<u> </u>			
* * * * * * * * * * * * *	* * * * * *	* * * * * *	* * * * * *	* * * * *
Initial Extract pH	9,5			
Final Extract pH (24 hr)	7.3			
Acid Added (24hr) (ml)	406.			
Final Extract pH (28hr)				
Acid Added (4hr)(ml)				
Total Acid Added (ml)	406,			
Total DI Water Added (ml)	1624			
Original Liquid Phase(ml)				
Final Extract Volume (ml)	2030.	,	. , ,	
* * * * * * * * * * * * * * * * * * * *	* * * * * *	* * * * *	* * * * * *	* * * * *
RCRA Metals				. ,, -
Arsenic (PPM)	<0.01			
Barium (PPM)	0.8			
Cadmium (PPM)	< 0.01	·		
Chromium (PPM)	0,05			
Lead (PPM)	0,05			
Mercury (PPM)	<0.002			
Selenium (PPM)	<0.005			

Note: Tables of pH adjustments with time have been extracted from the EIS sample work sheets and are reproduced in the section of this report containing laboratory bench sheets.

ANALYTICAL REPORT SHEET STATE OF INDIANA - LEACHING METHOD ANALYSIS

EIS Lab Number	770F											
Client Description	#2 collector , #143											
* * * * * * * * * *		* * *	* * *	* >	* *	*	* *	*	*	*	* 1	* *
Weigh Raw Sample (g)	112,2				····			<u> </u>				
Filters Used	APIS							ļ. <u>.</u>				
	HAWP			<u> </u>		···		<u> </u>				
A. J.			·									
DI Water Added (ml)	2244										···•	
* * * * * * * * * * *	* * * * * *	* * *	* * *	* :	* *	*	* *	* *	*	*	* 1	t *
PARAMETERS					~			<u> </u>				
Copper (ppm)	40.05											
Iron (ppm)	0.14		,									
Manganese (ppm)	0.06											
Nickel (ppm)	0.06											
Sodium (ppm)	19.		g*									
Zinc (ppm)	0.08		† :									
Chlorides (ppm)	3.											
Cyanide, Total (ppm)	<0.005		·		· · · · · · · · · · · · · · · · · · ·							
Fluoride (ppm)	0.90											
PCB (ppm)												
Phenols (ppm)	0.07											<u>.</u>
Sulfate (ppm)	13.2											
Sulfide, Total (ppm)	1.8											
TDS (ppm)	57											
TOC (ppm)							-					
TOH (ppm)												
ph after 24 hours	10.2											

Note: The reverse side of this sheet lists reference methods utilized

1701 North Ironwood Drive • South Bend, Indiana 46635 • 219/277-5715

WASTE CLASSIFICATION ANALYSIS REPORT

Client: The Dalton Foundries	Sample Description
	EIS Analysis No.: 77lF
ATTN: J. R. Canan Date Sampled: 2-24-86	#4 Collector
Date Received: 3-3-86	#144
Date Forwarded: 4-29-86	•
Purchase Order: 122 229	

This report presents results of waste classification through laboratory analysis procedures. The following references were utilized, as needed, in the evaluation procedures herein.

- "Test Methods for the Evaluation of Solid Waste Physical/Chemical Methods" USEPA SW-846, July 1982, 2nd Edition
- "Methods for Chemical Analysis of Water and Wastes" EPA 600/4-79-020
- State of Indiana "Leaching Method"

The specific client requested analysis for the samples described above were the following.

EP Toxicity - Metals	X	State of Indiana Leaching Method	<u> X</u>
EP Toxicity - Organics		Volatile Organic Compounds	
Ignitability		Semi-volatile Organic Compounds	
Corrosivity		(Base/Neutrals Acid Fraction)	
Reactivity		PCB Pesticides	
Additional		·	

Materials constituting this report packet include laboratory analysis bench sheets. These bench sheets are required by the State of Indiana as an integral part of the Waste Classification Analysis Report. Certain sections of this report may not pertain to your samples but do constitute a part of the EIS Report Packet. All results are hand entered to eliminate data transfer errors.

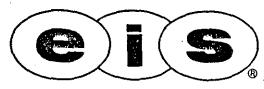
Parameter	% Recovery USEPA EMSL	- Accuracy	% RSD Precision
	QC Sample	Matrix Spike	Analysis
Arsenic *	90.6	-	·
Barium *	117.7	-	
Cadmium *	119,2	-	
Chromium *	105.6	-	
Copper	104.9		
Iron	105.5		·
Lead *	110,8	-	
Manganese	105.4		
Mercury *	101	-	
Nickel	105,7		÷
Selenium *	107.8		
Silver *	122,5	-	
Sodium	94.6	*	
Zinc	104.5		:
Chlorides	102.5		
Cyanide, Total	99.3		
Fluoride	76.9		
PCB			
рн			
Phenols	94,4		
Sulfate	93.4		
Sulfide, Total			
TDS	·		
TOC			
ТОН			

^{*} These metals are analyzed by the Method of Standard Additions

	EP Toxici		State of Indiana Leaching Method Foundry Waste Types Only					
Parameter		A A	B B	C Types On	D D			
Arsenic *	5.0	0.05	0.5	1.25	5.0			
Barium *	100	. ~ 1.	10.	25.	100.			
Cadmium *	1.0	0.01	0.1	0.25	1.0			
Chromium *	5.0	0.05	0.5	1.25	5.0			
Lead *	5.0	0.05	0.5	1.25	5.0			
Mercury *	0.2	0.002	0.02	0.05	0.2			
Selenium *	1.0	0.01	0.1	0.25	1.0			
Silver *	5.0	0.05	0.5	1.25	5.0			
Chlorides	-	250.	2500.	6250.	**			
Copper		0.25	2.5	6.25	**			
Cyanide, Total	· _	0.2	2.	5.	**			
Fluoride	_	1.4	14.	35.	**			
Iron	: -	1.5	15.	**	**			
Manganese	- ·	0.05	0.5	**	**			
Nickel	; <u> </u>	0.2	2.	5.	**			
PCB	, -	-	-	-	_			
рН	-	6.0 - 9	.0 5 - 10	4 - 11	**			
Phenols	· -	0.3	3.	7.5	**			
Sodium		250.	2500.	6250.	* *			
Sulfate		250.	2500.	6250.	**			
Sulfide, Total	-	_	5.	12.5	**			
TDS	-	500.	5000.	12500.	**			
TOC	—	-	-	_	-			
тон	, -	-	—	-	-			
Zinc		2.5	25.	62.5	**			

^{*} Limits shown are based on EP Toxicity Analysis Data

ANALYTICAL REPORT SHEET EP TOXICITY - METALS ANALYSIS


EIS Lab Number	771 <u>F</u>			
Client Description	#4 Collector			
;	#144	,		•
* * * * * * * * * * * * *	* * * * * *	* * * * *	* * * * *	* * * * *
% Solids	100			
Weight Raw Sample (g)	100.4			
Filters Used	AP15			
	HAWP			
·	· .			
* * * * * * * * * * * * * *	* * * * * *	* * * * * *	· * * * * *	* * * * *
Initial Extract pH	6.5			
Final Extract pH (24 hr)	7.3	777		
Acid Added (24hr)(ml)	401.6			
Final Extract pH (28hr)				
Acid Added (4hr)(ml)				
Total Acid Added (ml)	401.6			
Total DI Water Added (ml)	1606.	# (**)		
Original Liquid Phase(ml)	0			
Final Extract Volume (ml)	.2007.6			
* * * * * * * * * * * * * *	* * * * *	* * * * *	* * * * * *	* * * * *
RCRA Metals				
Arsenic (PPM)	<0.01			
Barium (PPM)	<0.5			
Cadmium (PPM)	40,01	·		
Chromium (PPM)	0.07			
Lead (PPM)	0.18			
Mercury (PPM)	40,002			
Selenium (PPM)	<0.005			
Silver (PPM)	40.05			T

Note: Tables of pH adjustments with time have been extracted from the EIS sample work sheets and are reproduced in the section of this report containing laboratory bench sheets.

ANALYTICAL REPORT SHEET STATE OF INDIANA - LEACHING METHOD ANALYSIS

EIS Lab Number		7	71	F											<u>-</u> -]
Client Description	1 7	#4 0	ollec	tor.								· · · · · ·				-	,					1
* * * * * * * *	* *	* *	* *	* *	*	*	*	*	*	X	*	*	*	*	*	*	*	*	*	*	* :	٤
Weigh Raw Sample ((g)	1	12.	7								-									_	
Filters Used			AP I																			\rfloor
	-	<i>}</i>	HAW	ρ						\dashv												-
	-				<u></u>					-	<u>. </u>					_						4
DI Water Added (ml	_)		25																			
* * * * * * * * *	* *	* *	* *	* *	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
PARAMETERS																						
Copper (pr	om)	~	0.0	5																	<u>.</u>	
Iron (pr	om)		0.16	>												_	<u> </u>					
Manganese (pr	om)	4	0.03	3				_														
Nickel (pr	om)	<	0.0	5																		
Sodium (pr	om)	3	2.					:_														
Zinc (pr	om)		0.4	2				শ্বী														
Chlorides (pr	om)		<u> </u>																			
Cyanide, Total (pr	om)	< 0	0,00	05																		
Fluoride (pr	om)	23	3.					-								_				•		
PCB (pr	om)																					
Phenols (pr	om)	(,4	9																		
Sulfate (pr	om)	<.	5.																			
Sulfide, Total (pr	pm)		1.4																			
TDS (pr	pm)	//-	4.																			
TOC (PI	pm)																					
тон (р	pm)													<u></u>		•						
ph after 24 hours			9.4																			_

Note: The reverse side of this sheet lists reference methods utilized

1701 North Ironwood Drive • South Bend, Indiana 46635 • 219/277-5715

WASTE CLASSIFICATION ANALYSIS REPORT

Client: The Dalton Foundries ATTN: J. R. Canan	Sample Description EIS Analysis No.: 772F	
Date Sampled: 2-24-86 Date Received: 3-3-86 Date Forwarded: 4-29-86 Purchase Order: 122 229	#6 Collector #145	

This report presents results of waste classification through laboratory analysis procedures. The following references were utilized, as needed, in the evaluation procedures herein.

- "Test Methods for the Evaluation of Solid Waste Physical/Chemical Methods" USEPA SW-846, July 1982, 2nd Edition
- "Methods for Chemical Analysis of Water and Wastes" EPA 600/4-79-020
- State of Indiana "Leaching Method"

The specific client requested analysis for the samples described above were the following.

EP Toxicity - Metals	<u> </u>	State of Indiana Leaching Metho	d X
EP Toxicity - Organics		Volatile Organic Compounds	
Ignitability		Semi-volatile Organic Compounds	
Corrosivity		(Base/Neutrals Acid Fraction)	
Reactivity		PCB Pesticides	
Additional			

Materials constituting this report packet include laboratory analysis bench sheets. These bench sheets are required by the State of Indiana as an integral part of the Waste Classification Analysis Report. Certain sections of this report may not pertain to your samples but do constitute a part of the EIS Report Packet. All results are hand entered to eliminate data transfer errors.

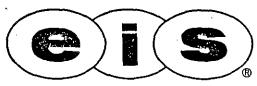
Parameter	% Recovery USEPA EMSL	- Accuracy	% RSD ' Precision
- Tarameter	QC Sample	Matrix Spike	Analysis
Arsenic *	90.6	_	
Barium *	117.7	-	
Cadmium *	119, 2.	-	
Chromium *	105.6		
Copper	104.9		
Iron	105.5		
Lead *	110,8	-	
Manganese	105.4		
Mercury *	10/	-	
Nickel	105,7	·	
Selenium *	107.8		
Silver *	122,5	-	
Sodium	94.6	294	
Zinc	104.5		·
Chlorides	102.5		·
Cyanide, Total	99.3		
Fluoride	76.9		5.4
PCB			
рН			
Phenols	94,4		
Sulfate	93.4		
Sulfide, Total			
TDS			
TOC			
ТОН			

^{*} These metals are analyzed by the Method of Standard Additions

ED.	Toxic		te of Indiana Foundry Wast		
Parameter	RCRA	A	B B	C C	D D
Arsenic *	5.0	0.05	0.5	1.25	5.0
Barium *	100	1.	10.	25.	100.
Cadmium *	1.0	0.01	0.1	0.25	1.0
Chromium *	5.0	0.05	0.5	1.25	5.0
Lead *	5.0	0.05	0.5	1.25	5.0
Mercury *	0.2	0.002	0.02	0.05	0.2
Selenium *	1.0	0.01	0.1	0.25	1.0
Silver *	5.0	0.05	0.5	1.25	5.0
Chlorides	. i –	250.	2500.	6250.	**
Copper	· -	0.25	2.5	6.25	**
:yanide, Total	·	0.2	2.	5.,	**
Fluoride	_	1.4	14.	35.	**
Iron	. -	1.5	1,5	**	**
Manganese	: 	0.05	0.5	**	**
Nickel		0.2	2.	5.	**
PCB		-	-	_	-
рН		6.0 - 9	0 5 - 10	4 - 11	**
Phenols	-	0.3	3.	7.5	**
Sodium	; -	250.	2500.	6250.	**
Sulfate		250.	2500.	6250.	**
Sulfide, Total	_	•••	5.	12.5	**
TDS		500.	5000.	12500.	* *
TOC	_	-	-	••	-
ТОН	-	_		***	-
Zinc	_	2.5	25.	62.5	**

^{*} Limits shown are based on EP Toxicity Analysis Data

ANALYTICAL REPORT SHEET EP TOXICITY - METALS ANALYSIS


EIS Lab Number	772 F		,	•
Client Description	#6 Collector			
	#145			•
* * * * * * * * * * * *	* * * * *	* * * * *	* * * * *	* * * * *
% Solids	100	·.		
Weight Raw Sample (g)	102.3		·	_
Filters Used	AP15			
	HAWP			
* * * * * * * * * * * * * *	* * * * * * *	* * * * * *	* * * * * *	* * * * *
Initial Extract pH	6.9			
Final Extract pH (24 hr)	7.2	, , , , , , , , , , , , , , , , , , ,]	
Acid Added (24hr)(ml)	409,2			
Final Extract pH (28hr)		· · · · · · · · · · · · · · · · · · ·		
Acid Added (4hr)(ml)	_			
Total Acid Added (ml)	409.2			
Total DI Water Added (ml)	1637	*		
Original Liquid Phase(ml)	0			
Final Extract Volume (ml)	2046.2	• • • • • • • • •		
* * * * * * * * * * * * * * * * * * * *	* * * * * *	* * * * *	* * * * * *	* * * * *
RCRA Metals			,	
Arsenic (PPM)	<0.01			
Barium (PPM)	<0.5			
Cadmium (PPM)	40.01			
Chromium (PPM)	40.05			
Lead (PPM)	40.05			
Mercury (PPM)	<0.002			
Selenium (PPM)	<0.005			

Note: Tables of pH adjustments with time have been extracted from the EIS sample work sheets and are reproduced in the section of this report containing laboratory bench sheets

ANALYTICAL REPORT SHEET STATE OF INDIANA - LEACHING METHOD ANALYSIS

EIS Lab Number	772 <i>F</i>									
Client Description	#6 Collector ,									
* * * * * * * * * * *	* * * * * *	* * *	* * *	* *	* *	* *	*	* *	* *	* *
Weigh Raw Sample (g)	110.6									
Filters Used	AP15									
	HAWP		·				<u> </u>			
						 .		<u></u>		
DI Water Added (ml)	22/2									·
* * * * * * * * * *	* * * * * *	* * *	* * *	* *	* *	* 7	* *	* :	* *	* *
PARAMETERS		 					<u> </u>			
Copper (ppm)	<0.05								·.	
Iron (ppm)	0.10									
Manganese (ppm)	0.04									
Nickel (ppm)	∠0.05									
Sodium (ppm)	17.		24	_						
Zinc (ppm)	0.03		7 9							
Chlorides (ppm)	1.									
Cyanide, Total (ppm)	<0.005								_	<u>.</u>
Fluoride (ppm)	7.8									·
PCB (ppm)										,
Phenols (ppm)	0.26								,	
Sulfate (ppm)	< 5.									
Sulfide, Total (ppm)	1.4			_						
TDS (ppm)	44.									
TOC (ppm)										
TOH (ppm)										
ph after 24 hours	10,2									

Note: The reverse side of this sheet lists reference methods utilized

1701 North Ironwood Drive • South Bend, Indiana 46635 • 219/277-5715

WASTE CLASSIFICATION ANALYSIS REPORT

Client: The Dalton Foundries

ATTN: J. R. Canan

Date Sampled: 2-24-86

Date Received: 3-3-86

Date Forwarded: 4-29-86

Purchase Order: 122 229

Sample Description

EIS Analysis No.: 773F

#9 Collector

#146

This report presents results of waste classification through laboratory analysis procedures. The following references were utilized, as needed, in the evaluation procedures herein.

- "Test Methods for the Evaluation of Solid Waste Physical/Chemical Methods" USEPA SW-846, July 1982, 2nd Edition
- "Methods for Chemical Analysis of Water and Wastes" EPA 600/4-79-020
- State of Indiana "Leaching Method"

The specific client requested analysis for the samples described above were the following.

EP Toxicity - Metals	<u> X</u>	State of Indian	a Leaching Method	X
EP Toxicity - Organics		Volatile Organi	c Compounds	
Ignitability		Semi-volatile C (Base/Neutrals	rganic Compounds Acid Fraction)	
Corrosivity		•		
Reactivity		PCB	Pesticides	
Additional				

Materials constituting this report packet include laboratory analysis bench sheets. These bench sheets are required by the State of Indiana as an integral part of the Waste Classification Analysis Report. Certain sections of this report may not pertain to your samples but do constitute a part of the EIS Report Packet. All results are hand entered to eliminate data transfer errors.

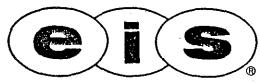
Parameter	USEPA EMSL	- Accuracy	% RSD Precision
	QC Sample	Matrix Spike	Analysis
Arsenic *	90.6	-	
Barium *	117.7	-	
Cadmium *	119,2	-	
Chromium *	105.6	-	
Copper	104.9		
Iron	105.5		
Lead *	110.8	-	
Manganese	105.4		
Mercury *	101	-	. 0
Nickel	105.7		
Selenium *	107.8		
Silver *	122,5	-	:
Sodium	94.6	. 24	
Zinc	104.5		
Chlorides	102.5	124	
Cyanide, Total	99.3		0
Fluoride	76.9		·
PCB			
рн			
Phenols	94.4		
Sulfate	93.4		
Sulfide, Total			
TDS			
TOC			
ТОН			

^{*} These metals are analyzed by the Method of Standard Additions

A. C. S. C. RP	Toxicity			Leaching Me	
Parameter	RCRA	A	B	C C	D
Arsenic *	5.0	0.05	0.5	1.25	5.0
Barium *	100	1. 0	10.	25.	100.
Cadmium *	1.0	0.01	0.1	0.25	1.0
Chromium *	5.0	0.05	0.5	1.25	5.0
Lead *	5.0	0.05	0.5	1.25	5.0
Mercury *	0.2	0.002	0.02	0.05	0.2
Selenium *	1.0	0.01	0.1	0.25	1.0
Silver *	5.0	0.05	0.5	1.25	5.0
Chlorides	<u> -</u>	250.	2500.	6250.	**
Copper	. -	0.25	2.5	6.25	* *
Cyanide, Total	-	0.2	2.	5.	**
Fluoride	· _	1.4	14.	35.	**
Iron	: -	1.5	1,5	**	**
Manganese	· -	0.05	0.5	**	**
Nickel	i <u>-</u>	0.2	2.	5.	**
PCB	<u> </u>	-	••	-	-
рН	-	6.0 - 9.0	5 - 10	4 - 11	**
Phenols	: -	0.3	3.	7.5	**
Sodium		250.	2500.	6250.	**
Sulfate	-	250.	2500.	6250.	**
Sulfide, Total	-	-	5.	12.5	**
TDS		500.	5000.	12500.	**
TOC		-	-	-	
тон		-	-	-	-
Zinc	<u>-</u>	2.5	25.	62.5	, * *

^{*} Limits shown are based on EP Toxicity Analysis Data

ANALYTICAL REPORT SHEET EP TOXICITY - METALS ANALYSIS


EIS Lab Number	773F			
Client Description	#9 Collector		. ,	
•	#146			
* * * * * * * * * * * *	* * * * * *	* * * * *	* * * * *	* * * * *
% Solids	100			
Weight Raw Sample (g)	101.2.			
Filters Used	APIS			
	HAWP	i		
* * * * * * * * * * * * *	* * * * * *	* * * * * *	* * * * * *	* * * * *
Initial Extract pH	9.6			
Final Extract pH (24 hr)	5.9			
Acid Added (24hr) (ml)	404.8			
Final Extract pH (28hr)	_			
Acid Added (4hr)(ml)	_			
Total Acid Added (ml)	404.8			
Total DI Water Added (ml)	1619.	2019		
Original Liquid Phase(ml)	0			
Final Extract Volume (ml)	2023.8			
* * * * * * * * * * * * * * * * * * * *	* * * * *	* * * * *	* * * * * *	* * * * *
RCRA Metals				
Arsenic (PPM)	40.01			
Barium (PPM)	0.6			
Cadmium (PPM)	40,01		_	
Chromium (PPM)	0.09			
Lead (PPM)	<0.05			
Mercury (PPM)	<0.002			
Selenium (PPM)	<0.005			
(== ,				

Note: Tables of pH adjustments with time have been extracted from the EIS sample work sheets and are reproduced in the section of this report containing laboratory bench sheets.

ANALYTICAL REPORT SHEET STATE OF INDIANA - LEACHING METHOD ANALYSIS

EIS Lab Number			77	73 <i>F</i>	<u> </u>						\neg												
Client Descript	ion	# 9	CO! # 1.	lecte	, سره													,		- 401			
* * * * * * *	* * *	*	* *	* 1	* *	*	*	*	*	*	*	*	*	*	*	*	$\overline{\star}$	*	*	*	*	*	*
Weigh Raw Sampl	.e (g)		11.	3.3																			
Filters Used			AF	15																		_	
			HA	IWP																			
						ļ			-		_						4	<u></u>			 		
DI Water Added	(ml)		Z 2	11		-					_						_				•••		
* * * * * * * *		*			* *	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
PARAMETERS																·							
Copper	(ppm)		<0.	05																	-		
Iron	(ppm)		0.	29																			
Manganese	(ppm)	-	< 0.	63																			
Nickel	(ppm)		۷0،	05																			
Sodium	(ppm)		20	,					1:				٠,										
Zinc	(ppm)		٥٠	06					J.														
Chlorides	(ppm)		3,																				
Cyanide, Total	(ppm)		0.	0/																			
Fluoride	(ppm)		0	. 14		<u> </u>												_					
PCB	(ppm)																						
Phenols	(ppm)		0	.07																		·	
Sulfate	(ppm)		<5																				
Sulfide, Total	(ppm)		1	. 2																			
TDS	(ppm)		52	-																			
TOC	(ppm)										_												
тон	(ppm)																						
ph after 24 ho	ırs		8	.8																			

Note: The reverse side of this sheet lists reference methods utilized

1701 North Ironwood Drive • South Bend, Indiana 46635 • 219/277-5715

WASTE CLASSIFICATION ANALYSIS REPORT

Client: The Dalton Foundries	Sample Description	
	EIS Analysis No.: 774F	-1.
ATTN: J. R. Canan		
Date Sampled: 2-26-86		
Date Received: 3-3-86	Shell Core	
Date Forwarded: 4-29-86	#147	
Purchase Order: 122 229		
•		

This report presents results of waste classification through laboratory analysis procedures. The following references were utilized, as needed, in the evaluation procedures herein.

- "Test Methods for the Evaluation of Solid Waste Physical/Chemical Methods" USEPA SW-846, July 1982, 2nd Edition
- "Methods for Chemical Analysis of Water and Wastes" EPA 600/4-79-020
- State of Indiana "Leaching Method"

The specific client requested analysis for the samples described above were the following.

EP Toxicity - Metals	<u> </u>	State of Indiana Leaching M	ethod X
EP Toxicity - Organics		Volatile Organic Compounds	<u></u>
Ignitability		Semi-volatile Organic Compo (Base/Neutrals Acid Fracti	unds .on)
Corrosivity		,,	
Reactivity		PCB Pesticides	
Additional			

Materials constituting this report packet include laboratory analysis bench sheets. These bench sheets are required by the State of Indiana as an integral part of the Waste Classification Analysis Report. Certain sections of this report may not pertain to your samples but do constitute a part of the EIS Report Packet. All results are hand entered to eliminate 'ata transfer errors.

		- Accuracy	% RSD			
Parameter	USEPA EMSL QC Sample	Matrix Spike	Precision Analysis			
	QC Bampie	Hucela opine	- Indijois			
Arsenic *	90.6	-				
Barium *	117.7	•••				
Cadmium *	119, 2	-	0			
Chromium *	105.6	-				
Copper	104.9					
Iron	105.5					
Lead *	110.8	-	,			
Manganese	105.4					
Mercury *	101					
Nickel	105.7					
Selenium *	107.8					
Silver *	122,5	-	0			
Sodium	94.6	*				
Zinc	104.5					
Chlorides	102.5					
Cyanide, Total	99.3					
Fluoride	76.9					
PCB						
pН						
Phenols	94.4					
Sulfate	93.4					
Sulfide, Total						
TDS	·					
TOC						
ТОН						

^{*} These metals are analyzed by the Method of Standard Additions

REGULATORY LIMITS (ppm)

Parameter	D.C		oundry Was	te Types Only		
Tarameter	RCRA	A	<u>B</u>	C	<u>D</u>	
Arsenic *	5.0	0.05	0.5	1.25	5.0	
Barium *	100	1.	10.	25.	100.	
Cadmium *	1.0	0.01	0.1	0.25	1.0	٠.
Chromium *	5.0	0.05	0.5	1.25	5.0	
Lead *	5.0	0.05	0.5	1.25	5.0	
Mercury *	0.2	0.002	0.02	0.05	0.2	
Selenium *	1.0	0.01	0.1	0.25	1.0	
Silver *	5.0	0.05	0.5	1.25	5.0	
Chlorides	- · - ·	250.	2500.	6250.	**	
Copper	_	0.25	2.5	6.25	**	
Cyanide, Total	- .	0.2	2.	5.	**	
Fluoride	-	1.4	14.	35.	**	ί,
Iron	-	1.5	15.	**	**	
Manganese	, · · -	0.05	0.5	**	**	
Nickel		0.2	2.	5.	**	
PCB	-	-	-	-	-	
рН	-	6.0 - 9.0	5 - 10	4 - 11	**	٠
Phenols	-	0.3	3.	7.5	**	
Sodium	-	250.	2500.	6250.	**	
Sulfate	-	250.	2500.	6250.	**	
Sulfide, Total	-	-	5.	12.5	**	
TDS		500.	5000.	12500.	**	
TOC		-	-	-	_	
тон	-	_	_	_	_	
Zinc	· 	2.5	25.	62.5	**	

^{*} Limits shown are based on EP Toxicity Analysis Data

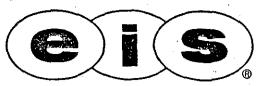
^{**} Testing is not required

ANALYTICAL REPORT SHEET EP TOXICITY - METALS ANALYSIS

EIS Lab Number	774F			
Client Description	Shell Gre		• .	
· · · · · · · · · · · · · · · · · · ·	#147			
* * * * * * * * * * * *	* * * * * *	* * * * *	* * * * * *	* * * * *
% Solids	100			
Weight Raw Sample (g)	101.2			
Filters Used	HAWP			
			<u> </u>	
* * * * * * * * * * * * *	* * * * * *	* * * * *	* * * * * *	* * * * *
Initial Extract pH	6.2	•		
Final Extract pH (24 hr)	5,0			
Acid Added (24hr)(ml)	2.8			
Final Extract pH (28hr)	_			
Acid Added (4hr)(ml)	-			
Total Acid Added (ml)	2.8			
Total DI Water Added (ml)	2021.	*		
Original Liquid Phase(ml)	. 0			,
Final Extract Volume (ml)	.2023.8			
* * * * * * * * * * * * *	* * * * * *	* * * * *	* * * * * *	* * * * * *
RCRA Metals				<u> </u>
Arsenic (PPM)	<0.01			
Barium (PPM)	40.5			
Cadmium (PPM)	20.01			
Chromium (PPM)	<0.05			
Lead (PPM)	40.05	,		
Mercury (PPM)	<0.002			
Selenium (PPM)	40.005			
Silver (PPM)	<0.05			

Note: Tables of pH adjustments with time have been extracted from the EIS sample work sheets and are reproduced in the section of this report containing laboratory bench sheets.

FOUNDRY WASTE CLASSIFICATION


Client Sample Description	Shell Core #147			
Waste Type Assigned	D			
Basis for Assignment	Phenol		·	

The State of Indiana has set forth catagories for classification of Foundry wastes into four (4) possible waste types. The classification is based on laboratory test results and the comparison of these results with maximum contaminant limits for each catagory. Foundry waste type limits are presented in the section of this report titled Regulatory Limits.

If EIS has assigned a waste type classification for samples identified above, the assignment was made on the following basis.

- Statistical calculations were used only if the test result (for any parameter) was within + 20% of the Regulatory Limit. If no parameter results were within this range, simple comparisons were made.
- · The parameter placing a waste into a certain Waste Type has been shown.
- · If statistical calculations were required, they were made as follows:
 - A single sample only was received for analysis. Statistical calculations were based on laboratory analytical precision data. The precision data used was either historical or specifically generated on that sample. In either case, the number of samples was considered to be two (2).
 - Multiple samples representing the same waste stream were received for analysis. Calculations were based on the values generated by all of the samples.

The equations used for the statistical calculations are presented on the reverse side of this report sheet. These equations were taken from SW-846.

1701 North Ironwood Drive • South Bend, Indiana 46635 • 219/277-5715

WASTE CLASSIFICATION ANALYSIS REPORT

Client: The Dalton Foundries	Sample Description
	EIS Analysis No.: 775F
ATTN: J. R. Canan	
Date Sampled: 2-26-86	
Date Received: 3-3-86	ISOCURE CORE
Date Forwarded: 4-29-86	#148
Purchase Order: 122 229	
· · · · · · · · · · · · · · · · · · ·	

This report presents results of waste classification through laboratory analysis procedures. The following references were utilized, as needed, in the evaluation procedures herein.

- "Test Methods for the Evaluation of Solid Waste Physical/Chemical Methods" USEPA SW-846, July 1982, 2nd Edition
- "Methods for Chemical Analysis of Water and Wastes" EPA 600/4-79-020
- State of Indiana "Leaching Method"

The specific client requested analysis for the samples described above were the following.

EP Toxicity - Metals	X	State of Indiana Leaching Method X
EP Toxicity - Organics		Volatile Organic Compounds
Ignitability		Semi-volatile Organic Compounds
Corrosivity		(Base/Neutrals Acid Fraction)
Reactivity		PCB Pesticides
Additional		

Materials constituting this report packet include laboratory analysis bench sheets. These bench sheets are required by the State of Indiana as an integral part of the Waste Classification Analysis Report. Certain sections of this report may not pertain to your samples but do constitute a part of the EIS Report Packet. All results are hand entered to eliminate data transfer errors.

	% Recovery	- Accuracy	% RSD
Parameter	USEPA EMSL QC Sample	Matrix Spike	Precision Analysis
Arsenic *	83.7		0
Barium *	117,5	- .	
Cadmium *	///.	•	
Chromium *	110.8	-	
Copper	108,2		
Iron	102.4		
Lead *	120.2	-	
Manganese	100.6		
Mercury *	116.7	-	
Nickel	109,2		
Selenium *	103.5		. 0
Silver *	127.	_	
Sodium	94.8	*	
Zinc	103,4		
Chlorides	102.5		
Cyanide, Total	99,3		
Fluoride	76.9		
PCB			
рН			
Phenols	94.4		12.7
Sulfate	94.4		
Sulfide, Total			
TDS			
TOC			
TOH			

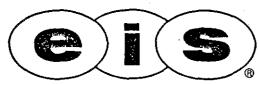
^{*} These metals are analyzed by the Method of Standard Additions

	EP Toxicity			a Leaching l te Types On	
Parameter	RCRA	A	B	C	D
Arsenic *	5.0	0.05	0.5	1.25	5.0
Barium *	100	1.	10.	25.	100.
Cadmium *	1.0	0.01	0.1	0.25	1.0
Chromium *	5.0	0.05	0.5	1.25	5.0
Lead *	5.0	0.05	0.5	1.25	5.0
Mercury *	0.2	0.002	0.02	0.05	0.2
Selenium *	1.0	0.01	0.1	0.25	1.0
Silver *	5.0	0.05	0.5	1.25	5.0
Chlorides	-	250.	2500.	6250.	**
Copper	-	0.25	2.5	6.25	**
Cyanide, Total	-	0.2	2.	5.	**
Fluoride	-	1.4	14.	35.	**
Iron	-	1.5	15.	**	**
Manganese	wa	0.05	0.5	**	**
Nickel	· -	0.2	2.	5.	**
PCB		-		-	-
рн		6.0 - 9.0	5 - 10	4 - 11	**
Phenols	_	0.3	3.	7.5	**
Sodium	-	250.	2500.	6250.	**
Sulfate	_	250.	2500.	6250.	**
Sulfide, Total	-	_	5.	12.5	**
TDS	_	500.	5000.	12500.	**
TOC	-	-	-	-	_
TOH	-	<u></u>	-	-	_
Zinc		2.5	25.	62.5	**

^{*} Limits shown are based on EP Toxicity Analysis Data

^{**} Testing is not required

ANALYTICAL REPORT SHEET EP TOXICITY - METALS ANALYSIS


EIS Lab Number	775F		,	
Client Description	ISOCURE CORE			
	#148	-	•	·
* * * * * * * * * * * *	* * * * * *	* * * * *	* * * * * *	* * * * *
% Solids	100			
Weight Raw Sample (g)	102.3			
Filters Used	HAWP			
* * * * * * * * * * * *	* * * * * * *	* * * * * *	* * * * *	\
Initial Extract pH	6.4			
Final Extract pH (24 hr)	4.8	<u> </u>		
Acid Added (24hr) (ml)	2.2			
Final Extract pH (28hr)	_			
Acid Added (4hr)(ml)	-			
Total Acid Added (ml)	2.2			
Total DI Water Added (m)	.) 2044,	: **		
Original Liquid Phase(ml	L) 0			
Final Extract Volume (m)				
* * * * * * * * * * * *	* * * * * *	* * * * *	* * * * * *	* * * * *
RCRA Metals				
Arsenic (PPM)	40.01			
Barium (PPM)	<0,5			
Cadmium (PPM)	20.01			
Chromium (PPM)	<0.05			
Lead (PPM)	<0.05			
Mercury (PPM)	<0.002		·	
Selenium (PPM)	40.005			
				

Note: Tables of pH adjustments with time have been extracted from the EIS sample work sheets and are reproduced in the section of this report containing laboratory bench sheets.

ANALYTICAL REPORT SHEET STATE OF INDIANA - LEACHING METHOD ANALYSIS

EIS Lab Number	775F		•											-				
Client Description	ISOCURE CORE, #148							•••					•					
* * * * * * * * * * *	* * * * * *	* *	* *	*	*	*	*	*	*	*	*	⇉	*	*	*	*	*	*
Weigh Raw Sample (g)	111.5			,														ļ
Filters Used	HAWP			·														
·							<u> </u>											
										_								
DI Water Added (ml)	2230						,	•								-		
* * * * * * * * * * * *	* * * * * *	* 7	* *	*	* *	*	*	*	*	*	*	*	*	*	*	*	*	*
PARAMETERS																		
Copper (ppm)	0.07															٠.		
Iron (ppm)	0.13																	
Manganese (ppm)	< 0.03																	
Nickel (ppm)	<0.05			•														
Sodium (ppm)	< 1.				2													
Zinc (ppm)	0.05				Ą.						····							
Chlorides (ppm)	1.												 					
Cyanide, Total (ppm)	<0.005				<u> </u>													
Fluoride (ppm)	≺ 0, <i>l</i>		-															
PCB (ppm)				.,														
Phenols (ppm)	2,23																	
Sulfate (ppm)	< <u>5</u> ,																	
Sulfide, Total (ppm)	1.8																	
TDS (ppm)	20.																	
TOC (ppm)																		
TOH (ppm)																	-:	
ph after 24 hours	6.3																	

Note: The reverse side of this sheet lists reference methods utilized

1701 North Ironwood Drive • South Bend, Indiana 46635 • 219/277-5715

WASTE CLASSIFICATION ANALYSIS REPORT

Client: The Dalton Foundries	Sample Description				
	EIS Analysis No.: 776F				
ATTN: J. R. Canan					
Date Sampled: 2-26-86					
Date Received: 3-3-86	SO ₂ Core				
Date Forwarded: 4-29-86	#149				
Purchase Order: 122 229	** · · · · · · · · · · · · · · · · ·				

This report presents results of waste classification through laboratory analysis procedures. The following references were utilized, as needed, in the evaluation procedures herein.

- "Test Methods for the Evaluation of Solid Waste Physical/Chemical Methods" USEPA SW-846, July 1982, 2nd Edition
- "Methods for Chemical Analysis of Water and Wastes" EPA 600/4-79-020
- State of Indiana "Leaching Method"

The specific client requested analysis for the samples described above were the following.

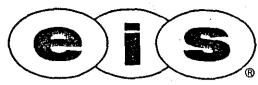
EP Toxicity - Metals	X	State of Indian	a Leaching Method	X
EP Toxicity - Organics		Volatile Organi	.c Compounds	
Ignitability		Semi-volatile (Organic Compounds	
Corrosivity	· · · · · · · · · · · · · · · · · · ·	(Base/Neutrals	Acid Fraction)	
Reactivity		PCB	Pesticides	
Additional				

Materials constituting this report packet include laboratory analysis bench sheets. These bench sheets are required by the State of Indiana as an integral part of the Waste Classification Analysis Report. Certain sections of this report may not pertain to your samples but do constitute a part of the EIS Report Packet. All results are hand entered to eliminate data transfer errors.

	. % Recovery	% RSD					
Parameter	USEPA EMSL	Matrix Crite	Precision				
	QC Sample	Matrix Spike	Analysis				
Arsenic *	83.7	· -					
Barium *	117.5	-	0				
Cadmium *	111.	_					
Chromium *	110.8	•					
Copper	108,2						
Iron	102.4						
Lead *	120,2	-					
Manganese	100.6						
Mercury *	116,7	_					
Nickel	109, 2		:				
Selenium *	103,5						
Silver *	127.	-					
Sodium	94.8	*					
Zinc	103.4						
Chlorides	102,5						
Cyanide, Total	99.3						
Fluoride	76.9						
PCB							
рн							
Phenols	94.4						
Sulfate	94.4						
Sulfide, Total		·					
TDS							
TOC							
TOH							

^{*} These metals are analyzed by the Method of Standard Additions

		Ng.			
14	EP Toxicity		of Indiana oundry Wast		
Parameter	RCRA	A	B	C	<u>D</u>
Arsenic *	5.0	0.05	0.5	1.25	5.0
Barium *	100	1.	10.	25.	100.
Cadmium *	1.0	0.01	0.1	0.25	1.0
Chromium *	5.0	0.05	0.5	1.25	5.0
Lead *	5.0	0.05	0.5	1.25	5.0
Mercury *	0.2	0.002	0.02	0.05	0.2
Selenium *	1.0	0.01	0.1	0.25	1.0
Silver *	5.0	0.05	0.5	1.25	5.0
Chlorides	-	250.	2500.	6250.	**
Copper	, -	0.25	2.5	6.25	**
Cyanide, Total	-	0.2	2.	5.	**
fluoride	-	1.4	14.	35.	**
Iron	-	1.5	1,5.	**	**
Manganese	, ; -	0.05	0.5	**	**
Nickel	-	0.2	2.	5.	**
PCB	-	- .	-	-	-
рН	-	6.0 - 9.0	5 - 10	4 - 11	**
Phenols	-	0.3	3.	7.5	**
Sodium	-	250.	2500.	6250.	**
Sulfate	-	250.	2500.	6250.	**
Sulfide, Total	-	_	5.	12.5	**
TDS	-	500.	5000.	12500.	**
TOC	-	_	-	-	-
ТОН	-	~	-	-	-
Zinc		2.5	25.	62.5	**


^{*} Limits shown are based on EP Toxicity Analysis Data Testing is not required

EIS Lab Number	776F			
Client Description	SO2 CORE			
	#149			•
* * * * * * * * * * * *	* * * * * *	* * * * * *	* * * * *	* * * * *
% Solids	100			
Weight Raw Sample (g)	100.5			
Filters Used	HAWP			
,				
* * * * * * * * * * * * *	* * * * * *	* * * * *	* * * * *	* * * * *
Initial Extract pH	6.4			_
Final Extract pH (24 hr)	4.9			
Acid Added (24hr)(ml)	1			
Final Extract pH (28hr)	-			
Acid Added (4hr)(ml)	_			
Total Acid Added (ml)	1			
Total DI Water Added (ml)	2009	M		
Original Liquid Phase(ml)	.0.			, . , .
Final Extract Volume (ml)	2010	·		
* * * * * * * * * * * * * * * *	* * * * * *	* * * * *	* * * * * *	* * * * *
RCRA Metals				,
Arsenic (PPM)	< 0.01			
Barium (PPM)	<0.5			
Cadmium (PPM)	<0.01			
Chromium (PPM)	40.05			
Lead (PPM)	20.05			
Mercury (PPM)	40,002			
Selenium (PPM)	40,005			
Silver (PPM)	40.05	1		1

ANALYTICAL REPORT SHEET STATE OF INDIANA - LEACHING METHOD ANALYSIS

EIS Lab Number	776F				
Client Description	502 Core , #149				1
* * * * * * * * * * *	* * * * * *	* * * * *	* * * *	* * * *	* * * * * *
Weigh Raw Sample (g)	111.2				
Filters Used	HAWP		_	·	
		· · · · · · · · · · · · · · · · · · ·			
		, , , , , , , , , , , , , , , , , , ,			
DI Water Added (ml)	2224	<u></u>		÷	
* * * * * * * * * * * *	* * * * * *	* * * * *	* * * *	* * * *	* * * * * *
PARAMETERS			·.	:	
Copper (ppm)	0.04				· -
Iron (ppm)	0.14			,	
Manganese (ppm)	<0.03				
Nickel (ppm)	0.09				
Sodium (ppm)	<1.				
Zinc (ppm)	0.03	1	9		
Chlorides (ppm)	<1.				
Cyanide, Total (ppm)	<0,005				
Fluoride (ppm)	۷٥،۱				
PCB (ppm)					
Phenols (ppm)	1.51				
Sulfate (ppm)	< 5				
Sulfide, Total (ppm)	1.6				
TDS (ppm)	14.				
TOC (ppm)					
TOH (ppm)					
ph after 24 hours	6,2				

Note: The reverse side of this sheet lists reference methods utilized

1701 North Ironwood Drive • South Bend, Indiana 46635 • 219/277-5715

WASTE CLASSIFICATION ANALYSIS REPORT

Client: The Dalton Foun	dries Sample Description
	EIS Analysis No.: 777F
ATTN: J. R. Canan	
Date Sampled: 2-24-8	5
Date Received: 3-3-86	Waste Sand
Date Forwarded: 4-29-8	6
Purchase Order: 122 22)

This report presents results of waste classification through laboratory analysis procedures. The following references were utilized, as needed, in the evaluation procedures herein.

- "Test Methods for the Evaluation of Solid Waste Physical/Chemical Methods" USEPA SW-846, July 1982, 2nd Edition
- "Methods for Chemical Analysis of Water and Wastes" EPA 600/4-79-020
- State of Indiana "Leaching Method"

The specific client requested analysis for the samples described above were the following.

EP Toxicity - Metals	X	State of Indiana Leaching Method	X
EP Toxicity - Organics		Volatile Organic Compounds	
Ignitability		Semi-volatile Organic Compounds	
Corrosivity		(Base/Neutrals Acid Fraction)	
Reactivity		PCB Pesticides	
Additional			

Materials constituting this report packet include laboratory analysis bench sheets. These bench sheets are required by the State of Indiana as an integral part of the Waste Classification Analysis Report. Certain sections of this report may not pertain to your samples but do constitute a part of the EIS Report Packet. All results are hand entered to eliminate ata transfer errors.

QUALITY ASSURANCE DATA EP TOXICITY and/or LEACHING METHOD

Parameter	% Recovery USEPA EMSL	- Accuracy	% RSD ' Precision
Tarameter	QC Sample	Matrix Spike	Analysis
Arsenic *	83,7		
Barium *	117.5	-	
Cadmium *	111.	-	
Chromium *	110.8		
Copper	108,2		
Iron	102,4		
Lead *	/20.2	•	
Manganese	100.6		,
Mercury *	116.7	-	
Nickel	109,2		
Selenium *	103,5		
Silver *	127,	-	
Sodium	94.8	49	
Zinc	103.4		
Chlorides	102.5		
Cyanide, Total	99.3		
Fluoride	76.9		
PCB			
рН			
Phenols	94.4		
Sulfate	93.4	. 60	
Sulfide, Total			
TDS			
TOC			
тон			

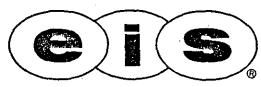
^{*} These metals are analyzed by the Method of Standard Additions

	EP Toxicity			a Leaching M te Types Onl	
Parameter	RCRA	A	B B	CC	D
Arsenic *	5.0	0.05	0.5	1.25	5.0
Barium *	100	1.	10.	25.	100.
Cadmium *	1.0	0.01	0.1	0.25	1.0
Chromium *	5.0	0.05	0.5	1.25	5.0
Lead *	5.0	0.05	0.5	1.25	5.0
Mercury *		0.002	0.02	0.05	0.2
Selenium *	1.0	0.01	0.1	0.25	1.0
Silver *	5.0	0.05	0.5	1.25	5.0
Chlorides		250.	2500.	6250.	* *
Copper	_	0.25	2.5	6.25	**
Cyanide, Total	-	0.2	2.	5.	**
Fluoride	_	1.4	14.	35.	**
Iron		1.5	15.	**	**
Manganese		0.05	0.5	**	**
Nickel	•	0.2	2.	5.	**
PCB	-	-	-	_	-
рН	-	6.0 - 9.0	5 - 10	4 - 11	**
Phenols	-	0.3	3.	7.5	**
Sodium	-	250.	2500.	6250.	**
Sulfate		250.	2500.	6250.	**
Sulfide, Total	-	-	5.	12.5	**
TDS	-	500.	5000.	12500.	**
TOC		<u></u>		. -	_
.'OH	-		_	-	_
Zinc		2.5	25.	62.5	**

^{*} Limits shown are based on EP Toxicity Analysis Data

^{**} Testing is not required

EIS Lab Number	777F		,	-
Client Description	Waste Sand #150			
* * * * * * * * * * * *	* * * * * *	* * * * *	* * * * *	* * * * *
% Solids	100			
Weight Raw Sample (g)	102.4			
Filters Used	APIS			· · · · · · · · · · · · · · · · · · ·
	AP25			
	HAWP			
* * * * * * * * * * * * * * *	* * * * * *	* * * * * *	* * * * * *	* * * * *
Initial Extract pH	9.8			
Final Extract pH (24 hr)	5.0			
Acid Added (24hr)(ml)	22,6			
Final Extract pH (28hr)				
Acid Added (4hr)(ml)				
Total Acid Added (ml)	22.6			
Total DI Water Added (ml)	2025,	*		
Original Liquid Phase(ml)	0.0			
Final Extract Volume (ml)	2047.6	•		
* * * * * * * * * * * * * * * * * * * *	* * * * * *	* * * * *	* * * * * *	* * * * *
RCRA Metals				
Arsenic (PPM)	40.01			<u></u>
Barium (PPM)	0.7			
Cadmium (PPM)	40.01			
Chromium (PPM)	0.05			
Lead (PPM)	40.05			
Mercury (PPM)	20.002			
Selenium (PPM)	<0.005			
	<0.05	1		


LEACHING METHOD ANALYTICAL REFERENCES

LEACHATE FORMATION

The leaching procedure utilized, and the equipment employed, is described on the report sheet titled SUPPLEMENTARY DATA EXTRACTION PROCEDURE TOXICITY TEST. The only deviation from the description is that NO PH adjustments were made.

ANALYTICAL METHODS

PARAMETER	SW-846 Method #	EPA 600/4-79-020 Method #
Chlorides		325.3
Copper	3010 / 7210	
Cyanide, Total	9010	
Fluoride		340.2
Iron		236.1
Manganese		243.1
Nickel	3010 / 7520	
PCB	8080	
рН		150.1
Phenols	•	420.2
Sodium		273.1
Sulfate		374.4
Sulfide, Total	9030	
TDS		160.2
TOC	9060	
TOH	9020	
Zinc	3010 / 7950	

1701 North Ironwood Drive • South Bend, Indiana 46635 • 219/277-5715

WASTE CLASSIFICATION ANALYSIS REPORT

Client: The Dalton Foundries	Sample Description
ATTN: J. R. Canan	EIS Analysis No.: 778F
Date Sampled: 2-27-86	Slag
Date Received: 3-3-86	#151
Date Forwarded: 4-29-86	
Purchase Order: 122 229	

This report presents results of waste classification through laboratory analysis procedures. The following references were utilized, as needed, in the evaluation procedures herein.

- "Test Methods for the Evaluation of Solid Waste Physical/Chemical Methods" USEPA SW-846, July 1982, 2nd Edition
- "Methods for Chemical Analysis of Water and Wastes" EPA 600/4-79-020
- State of Indiana "Leaching Method"

The specific client requested analysis for the samples described above were the following.

EP Toxicity - Metals	X	State of Indiana Leaching Method X	۲
EP Toxicity - Organics		Volatile Organic Compounds	
Ignitability		Semi-volatile Organic Compounds	
Corrosivity		(Base/Neutrals Acid Fraction)	
Reactivity		PCB Pesticides	
Additional			

Materials constituting this report packet include laboratory analysis bench sheets. These bench sheets are required by the State of Indiana as an integral part of the Waste Classification Analysis Report. Certain sections of this report may not pertain to your samples but do constitute a part of the EIS Report Packet. All results are hand entered to eliminate lata transfer errors.

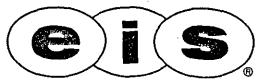
		Toxicity		of Indiana		
<u>Parameter</u>	<u></u>	RCRA	A	oundry Wast B	e Types on.	D
Arsenic *		5.0	0.05	0.5	1.25	5.0
Barium *		100	1.	10.	25.	100.
Cadmium *		1.0	0.01	0.1	0.25	1.0
Chromium *		5.0	0.05	0.5	1.25	5.0
Lead *		5.0	0.05	0.5	1.25	5.0
Mercury *		0.2	0.002	0.02	0.05	0.2
Selenium *		1.0	0.01	0.1	0.25	1.0
Silver *		5.0	0.05	0.5	1.25	5.0
Chlorides		.	250.	2500.	6250.	**
Copper		***	0.25	2.5	6.25	**
Cyanide, Total		· _	0.2	2.	5.	**
Fluoride		- .	1.4	14.	35.	**
Iron		<u>·</u>	1.5	15.	* *	**
Manganese		•••	0.05	0.5	**	**
Nickel		-	0.2	2.	5.	**
PCB		-	-	-	<u>-</u>	-
рН		-	6.0 - 9.0	5 - 10	4 - 11	**
Phenols		-	0.3	3.	7.5	**
Sodium		-	250.	2500.	6250.	**
Sulfate		500	250.	2500.	6250.	**
Sulfide, Total		-	_	5.	12.5	* *
TDS		-	500.	5000.	12500.	* *
TOC		-	-	-	_	_
JOH		-	-	_	•	
Zinc		. _	2.5	25.	62.5	**

^{*} Limits shown are based on EP Toxicity Analysis Data

^{**} Testing is not required

QUALITY ASSURANCE DATA EP TOXICITY and/or LEACHING METHOD

Parameter	. % Recovery USEPA EMSL	- Accuracy	% RSD Precision
rarameter	QC Sample	Matrix Spike	Analysis
Arsenic *	83.7		
Barium *	117.5		
Cadmium *	111.	-	
Chromium *	110.8	-	0
Copper	/08.2		
Iron	102.4		
Lead *	120,2	•••	
Manganese	100.6		
Mercury *	116.7	_	
Nickel	109,2		
Selenium *	103.5		
Silver *	127.	_	
Sodium	94.8	**	
Zinc	103.4		
Chlorides	102.5		
Cyanide, Total	99,3		
Fluoride	76.9		
PCB			
рН		·	
Phenols	94,4		
Sulfate	93.4		2.3
Sulfide, Total			
TDS			
TOC			
ТОН			÷


^{*} These metals are analyzed by the Method of Standard Additions

EIS Lab Number	778F			
Client Description				 ;
	51ag #151			. · }
* * * * * * * * * * * * *	* * * * *	* * * * * *	* * * * * *	* * * * *
% Solids	100	· .		
Weight Raw Sample (g)	104,1			
Filters Used	HAWP			
	· · · · · · · · · · · · · · · · · · ·			
* * * * * * * * * * * * *	* * * * * *	* * * * *	* * * * * *	* * * * *
Initial Extract pH	9.8			_
Final Extract pH (24 hr)	6.1			
Acid Added (24hr)(ml)	336.4	-		
Final Extract pH (28hr)	5,6			
Acid Added (4hr)(ml)	80.			
Total Acid Added (ml)	416.4			
Total DI Water Added (ml)	1616	*		
Original Liquid Phase(ml)	0			
Final Extract Volume (ml)	2032.4	•		
* * * * * * * * * * * * *	* * * * * *	* * * * *	* * * * * *	* * * * *
RCRA Metals				
Arsenic (PPM)	<0.01			
Barium (PPM)	0.8			
Cadmium (PPM)	<0,01			
Chromium (PPM)	0.09			
Lead (PPM)	0.16			
Mercury (PPM)	<0.002			
Selenium (PPM)	40,005			
Silver (PPM)	40.05		 	1

ANALYTICAL REPORT SHEET STATE OF INDIANA - LEACHING METHOD ANALYSIS

EIS Lab Number		77,	8 F											T	<u>-</u> -					7
Client Descript	ion	5/ag		1										1						
* * * * * * * *	* * *	* * *	* * *	*	*	*	*	* 7	* *	*	*	*	*	土	*	*	*	*	*	×
Weigh Raw Sampl	Le (g)	11	1.0																	
Filters Used		H	AWP											1						4
	:			-					-					+						-
			<u></u> _	-		··········		<u>.</u>	 			···-···	**	+	~			· · · · · ·		1
DI Water Added	(ml)	22	20		-					`										
* * * * * * * *	* * * *	* * *	* * *	*	*	*	*	*	* *	*	*	*	*	*	*	*	*	*	*	*
PARAMETERS		L								-										
Copper	(ppm)	0.	09															٠,		
Iron	(ppm)	0.	13																	
Manganese	(ppm)	۷٥,	<i>o</i> 3																	
Nickel	(ppm)	0.	06																	
Sodium	(ppm)	4,					;	·-					•					,		
Zinc	(ppm)	0,	09					ři:												
Chlorides	(ppm)	6.	· .																	
Cyanide, Total	(ppm)	≺ 0,	005					_					•							
Fluoride	(ppm)	0.	32																	
РСВ	(ppm)																			
Phenols	(ppm)	<0.	.005																	
Sulfate	(ppm)	18																		
Sulfide, Total	(ppm)	2	.4																	
TDS	(ppm)	70	•																	
TOC	(ppm)												-							
ТОН	(ppm)															· · ·	·····			
ph after 24 hor	urs	10	7.3																	

Note: The reverse side of this sheet lists reference methods utilized

1701 North Ironwood Drive • South Bend, Indiana 46635 • 219/277-5715

WASTE CLASSIFICATION ANALYSIS REPORT

Client: The Dalton Foun	dries Sample Description
	EIS Analysis No.: 779F
ATTN: J. R. Canan	
Date Sampled: 2-28-	86 Real Cathline Bank
Date Received: 3-3-8	East Settling Tank
Date Forwarded: 4-29-	86 #152 `
Purchase Order: 122 2	29

This report presents results of waste classification through laboratory analysis procedures. The following references were utilized, as needed, in the evaluation procedures herein.

- "Test Methods for the Evaluation of Solid Waste Physical/Chemical Methods" USEPA SW-846, July 1982, 2nd Edition
- "Methods for Chemical Analysis of Water and Wastes" EPA 600/4-79-020
- State of Indiana "Leaching Method"

The specific client requested analysis for the samples described above were the following.

EP Toxicity - Metals	X	State of Indiana Lea	aching Method X
EP Toxicity - Organics	<u> </u>	Volatile Organic Cor	mpounds
Ignitability		Semi-volatile Organ:	ic Compounds
Corrosivity .		(Base/Neutrals Acid	l Fraction)
Reactivity		PCB Pest:	icides
Additional			

Materials constituting this report packet include laboratory analysis bench sheets. These bench sheets are required by the State of Indiana as an integral part of the Waste Classification Analysis Report. Certain sections of this report may not pertain to your samples but do constitute a part of the EIS Report Packet. All results are hand entered to eliminate data transfer errors.

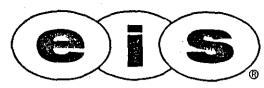
QUALITY ASSURANCE DATA EP TOXICITY and/or LEACHING METHOD

Parameter	. % Recovery USEPA EMSL	- Accuracy	% RSD ' Precision
rarameter	QC Sample	Matrix Spike	Analysis
Arsenic *	83.7	_	
Barium *	117.5	-	
Cadmium *	111.	-	
Chromium *	110.8	-	
Copper	108,2		0
Iron	102.4		0
Lead *	/20,2	-	
Manganese	100.6		20.2
Mercury *	116.7	- :	
Nickel	109.2		. 0
Selenium *	103,5		
Silver *	127.	-	
Sodium	94.8	**	0
Zinc	103.4		70.7
Chlorides	102,5		
Cyanide, Total	99.3		
Fluoride	76.9		
PCB			
рН			
Phenols	94,4		
Sulfate	94,4		
Sulfide, Total			. 15.7
TDS			
TOC			
ТОН			***************************************

^{*} These metals are analyzed by the Method of Standard Additions

	EP Toxicity			a Leaching M te Types Onl	
Parameter	RCRA	A	B	C	D
Arsenic *	5.0	0.05	0.5	1.25	5.0
Barium *	100	1.	10.	25.	100.
Cadmium *	1.0	0.01	0.1	0.25	1.0
Chromium *	5.0	0.05	0.5	1.25	5.0
Lead *		0.05	0.5	1.25	5.0
Mercury *	.0.2	0.002	0.02	0.05	0.2
Selenium *	1.0	0.01	0.1	0.25	1.0
Silver *	5.0	0.05	0.5	1.25	5.0
Chlorides	an magaza m aran m	-250	2500.	6250.	**
Copper	· -	0.25	2.5	6.25	**
Cyanide, Total	-	0.2	2.	5.	**
Fluoride	; <u>-</u>	1.4	14.	35.	**
Iron	-	1.5	<u>1,</u> 5.	**	**
Manganese	-	0.05	0.5	**	**
Nickel	#	0.2	2.	5.	**
PCB	-	-	_	-	· .
рН	***	6.0 - 9.0	5 - 10	4 - 11	**
Phenols		0.3	3.	7.5	**
Sodium	·	250.	2500.	6250.	**
Sulfate	-	250.	2500.	6250.	**
Sulfide, Total	••	-	5.	12.5	**
TDS	-	500.	5000.	12500.	**
TOC	_	-	-	-	
тон	.	-	-		_
Zinc	_	2.5	25.	62.5	* *

^{*} Limits shown are based on EP Toxicity Analysis Data


** machine in make ...

EIS Lab Number	779F			
Client Description	East Setting Tank		•	
	#152		•	
* * * * * * * * * * * *	* * * * * *	* * * * *	* * * * *	* * * * *
% Solids	70.0			
Weight Raw Sample (g)	119,8			
Filters Used	AP15			
	HAWP	·		
* * * * * * * * * * * * *	* * * * * *	* * * * * *	· * * * * *	* * * *
Initial Extract pH	7,3			
Final Extract pH (24 hr)	4.9			
Acid Added (24hr) (ml)	30.7			
Final Extract pH (28hr)				
Acid Added (4hr)(ml)	_			
Total Acid Added (ml)	<i>3</i> 0.7			
Total DI Water Added (ml)	1648,	*		
Original Liquid Phase(ml)	31.			
Final Extract Volume (ml)	1709.7			
* * * * * * * * * * * * * * * *	* * * * * *	* * * * *	* * * * *	* * * * *
RCRA Metals				,
Arsenic (PPM)	<0.0/			
Barium (PPM)	0.6			<u>. </u>
Cadmium (PPM)	0.02		_	
Chromium (PPM)	<0.05			
Lead (PPM)	<0.05			
Mercury (PPM)	<0.002			
Selenium (PPM)	<0,00S			
Silver (PPM)	<0.05			

ANALYTICAL REPORT SHEET STATE OF INDIANA - LEACHING METHOD ANALYSIS

EIS Lab Number	779 <i>F</i>			••					·								7
Client Description	East Settling , Tank #152 * * * * * *										\ \						
* * * * * * * * * * *	* * * * * *	* *	* ;	* *	*	*	*	*	*	*	*	*	*	*	*	*	×
Weigh Raw Sample (g)	121.4																
Filters Used	AP15	i															╛
	APZS																
	HAWP			<u> </u>							_						
				•													
DI Water Added (ml)	2428					,											
* * * * * * * * * * * * *	* * * * * *	* *	* :	* *	*	*	*	*	*	*	*	*	*	*	*	*	*
PARAMETERS											_				··········		
Copper (ppm)	0.08														٠.		
Iron (ppm)	<0.10					l.											
Manganese (ppm)	0.04																
Nickel (ppm)	<0.05																
Sodium (ppm)	23.			<i>(*</i>													
Zinc (ppm)	<0.03			, st.												ï	
Chlorides (ppm)	8																
Cyanide, Total (ppm)	0,007																
Fluoride (ppm)	0.50			· -·				·									
PCB (ppm)																	
Phenols (ppm)	0.009																
Sulfate (ppm)	22.																
Sulfide, Total (ppm)	1.8																
TDS (ppm)	94																_
TOC (ppm)																	
TOH (ppm)																	
ph after 24 hours	7.0																

Note: The reverse side of this sheet lists reference methods utilized

1701 North Ironwood Drive • South Bend, Indiana 46635 • 219/277-5715

WASTE CLASSIFICATION ANALYSIS REPORT

Client: The Dalton Foundries	Sample Description
ATTN: J. R. Canan	EIS Analysis No.: 780F
Date Sampled: 2-28-86	North Settling Tank
	
Date Received: 3-3-86	#153
Date Forwarded: 4-29-86	
Purchase Order: 122 229	

This report presents results of waste classification through laboratory analysis procedures. The following references were utilized, as needed, in the evaluation procedures herein.

- "Test Methods for the Evaluation of Solid Waste Physical/Chemical Methods" USEPA SW-846, July 1982, 2nd Edition
- "Methods for Chemical Analysis of Water and Wastes" EPA 600/4-79-020
- State of Indiana "Leaching Method"

The specific client requested analysis for the samples described above were the following.

EP Toxicity - Metals	X	State of Indiana Leaching Method X	
EP Toxicity - Organics		Volatile Organic Compounds	
Ignitability		Semi-volatile Organic Compounds	
Corrosivity		(Base/Neutrals Acid Fraction)	
Reactivity		PCB Pesticides	
Additional			

Materials constituting this report packet include laboratory analysis bench sheets. These bench sheets are required by the State of Indiana as an integral part of the Waste Classification Analysis Report. Certain sections of this report may not pertain to your samples but do constitute a part of the EIS Report Packet. All results are hand entered to eliminate lata transfer errors.